Schoffelen P F, Westerterp K R, Saris W H, Ten Hoor F
Department of Human Biology, Maastricht University, 6200 MD Maastricht, The Netherlands.
J Appl Physiol (1985). 1997 Dec;83(6):2064-72. doi: 10.1152/jappl.1997.83.6.2064.
This study characterizes respiration chambers with fully automated calibration. The system consists of two 14-m3 pull-type chambers. Care was taken to provide a friendly environment for the subjects, with the possibility of social contact during the experiment. Gas analysis was automated to correct for analyzer drift and barometric pressure variations and to provide ease of use. Methods used for checking the system's performance are described. The gas-analysis repeatability was within 0.002%. Results of alcohol combustion (50-350 ml/min CO2) show an accuracy of 0.5 +/- 2.0 (SD) % for O2 consumption and -0.3 +/- 1.6% for CO2 production for 2- to 24-h experiments. It is concluded that response time is not the main factor with respect to the smallest practical measurement interval (duration); volume, mixing, gas-analysis accuracy, and levels of O2 consumption and CO2 production are at least equally important. The smallest practical interval was 15-25 min, as also found with most chamber systems described in the literature. We chose to standardize 0.5 h as the minimum measurement interval.
本研究对具有全自动校准功能的呼吸室进行了特性描述。该系统由两个14立方米的抽吸式呼吸室组成。在实验过程中,充分考虑为受试者提供一个友好的环境,使其有可能进行社交接触。气体分析实现了自动化,可校正分析仪漂移和气压变化,并便于使用。文中描述了用于检查系统性能的方法。气体分析的重复性在0.002%以内。酒精燃烧实验(二氧化碳产生量为50 - 350毫升/分钟)结果表明,在2至24小时的实验中,氧气消耗量的准确度为0.5±2.0(标准差)%,二氧化碳产生量的准确度为-0.3±1.6%。得出的结论是,对于最小实际测量间隔(时长)而言,响应时间并非主要因素;体积、混合效果、气体分析准确度以及氧气消耗量和二氧化碳产生量水平至少同等重要。最小实际间隔为15 - 25分钟,这与文献中描述的大多数呼吸室系统的情况一致。我们选择将0.5小时标准化为最小测量间隔。