Reich P B, Walters M B, Ellsworth D S
Department of Forest Resources, University of Minnesota, St. Paul, MN 55108, USA.
Proc Natl Acad Sci U S A. 1997 Dec 9;94(25):13730-4. doi: 10.1073/pnas.94.25.13730.
Despite striking differences in climate, soils, and evolutionary history among diverse biomes ranging from tropical and temperate forests to alpine tundra and desert, we found similar interspecific relationships among leaf structure and function and plant growth in all biomes. Our results thus demonstrate convergent evolution and global generality in plant functioning, despite the enormous diversity of plant species and biomes. For 280 plant species from two global data sets, we found that potential carbon gain (photosynthesis) and carbon loss (respiration) increase in similar proportion with decreasing leaf life-span, increasing leaf nitrogen concentration, and increasing leaf surface area-to-mass ratio. Productivity of individual plants and of leaves in vegetation canopies also changes in constant proportion to leaf life-span and surface area-to-mass ratio. These global plant functional relationships have significant implications for global scale modeling of vegetation-atmosphere CO2 exchange.
尽管从热带和温带森林到高山苔原和沙漠等不同生物群落的气候、土壤和进化历史存在显著差异,但我们发现在所有生物群落中,叶片结构与功能以及植物生长之间存在相似的种间关系。因此,我们的研究结果表明,尽管植物物种和生物群落具有巨大多样性,但植物功能存在趋同进化和全球普遍性。对于来自两个全球数据集的280种植物,我们发现潜在碳获取(光合作用)和碳损失(呼吸作用)随着叶片寿命的缩短、叶片氮浓度的增加以及叶面积质量比的增加而以相似的比例增加。个体植物以及植被冠层中叶片的生产力也与叶片寿命和叶面积质量比成固定比例变化。这些全球植物功能关系对植被 - 大气二氧化碳交换的全球尺度建模具有重要意义。