Suppr超能文献

昏迷的脑电图分类

An electroencephalographic classification for coma.

作者信息

Young G B, McLachlan R S, Kreeft J H, Demelo J D

机构信息

Department of Clinical Neurological Sciences, University of Western Ontario, London, Canada.

出版信息

Can J Neurol Sci. 1997 Nov;24(4):320-5. doi: 10.1017/s0317167100032996.

Abstract

BACKGROUND

The assessment of thalamocortical function in comatose patients in the intensive care unit (ICU) can be difficult to determine. Since the electroencephalogram (EEG) affords such assessment, we have developed an EEG classification for comatose patients in our general ICU.

METHODS

One hundred EEGs were classified in a blinded fashion by two EEGers, using our method and that of Synek. Interobserver agreement was assessed using kappa score determination.

RESULTS

Kappa scores were 0.90 for our system and 0.75 for the Synek system. (The Kappa score represents the inter-rater agreement that is beyond chance; 0.90 is almost perfect agreement, while 0.75 is substantial agreement).

CONCLUSION

Our system for classifying EEGs in comatose patients has a higher interobserver reliability than one that was previously published. This EEG classification scheme should be useful in clinical electrophysiological research involving ICU patients, allowing for internal consistency and comparisons among centres.

摘要

背景

在重症监护病房(ICU)中,评估昏迷患者的丘脑皮质功能可能具有挑战性。由于脑电图(EEG)可提供此类评估,我们已为综合ICU中的昏迷患者制定了一种EEG分类方法。

方法

两名脑电图专家以盲法使用我们的方法和西内克的方法对100份脑电图进行分类。使用kappa评分确定法评估观察者间的一致性。

结果

我们的系统kappa评分为0.90,西内克系统为0.75。(kappa评分代表超出偶然的评分者间一致性;0.90几乎是完美一致,而0.75是实质性一致)。

结论

我们用于昏迷患者脑电图分类的系统比先前发表的系统具有更高的观察者间可靠性。这种脑电图分类方案应有助于涉及ICU患者的临床电生理研究,确保内部一致性并便于各中心之间进行比较。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验