Klein S A
School of Optometry, University of California at Berkeley, USA.
Optom Vis Sci. 1997 Nov;74(11):945-62. doi: 10.1097/00006324-199711000-00028.
Because corneal shape is typically measured with Placido ring targets, there is an ambiguity in determining which point on the ring corresponds to which point on the image. This ambiguity is expected to lead to errors (which we call the skew ray error) in reconstructing the corneal shape from Placido ring videokeratoscope (VKS) images.
A coordinate system based on cylindrical coordinates is developed for handling the case when the corneal normal does not lie in the meridional plane. A simple solution is found for the forward problem of locating the Placido ring object given the VKS image and the corneal slope.
Algorithms for solving two inverse problems are developed: (1) the inverse problem of determining the Placido image given the Placido ring object and the corneal shape, and (2) the inverse problem of reconstructing the corneal shape based on knowledge of the Placido ring object and image. The algorithm compensates for the skew ray error and does not assume the cornea to be small. Both inverse algorithms are applied to a corneal shape with eight-fold corrugations similar to what might occur in radial keratotomy (RK). The reconstruction algorithm assumes sufficient smoothness for an arc-step algorithm to be possible. We find that the reconstruction algorithm does an excellent job of obtaining the correct corneal shape without the skew ray error.
The concrete reconstruction algorithm demonstrates that one can recover the correct corneal shape just from the reflection of the Placido rings. A dart board pattern is not necessary for removing the skew ray ambiguity, as long as the cornea has sufficient smoothness in the radial direction, an assumption common to all reconstruction algorithms.
由于角膜形状通常是用普拉西多环目标进行测量的,因此在确定环上的哪个点对应于图像上的哪个点时存在模糊性。预计这种模糊性会在从普拉西多环式角膜地形图仪(VKS)图像重建角膜形状时导致误差(我们称之为斜射线误差)。
开发了一种基于柱面坐标的坐标系,用于处理角膜法线不在子午面内的情况。找到了一个简单的解决方案,用于在已知VKS图像和角膜斜率的情况下定位普拉西多环物体的正向问题。
开发了用于解决两个逆问题的算法:(1)在已知普拉西多环物体和角膜形状的情况下确定普拉西多图像的逆问题,以及(2)基于对普拉西多环物体和图像的了解重建角膜形状的逆问题。该算法补偿了斜射线误差,并且不假设角膜很小。两种逆算法都应用于具有八重波纹的角膜形状,类似于放射状角膜切开术(RK)中可能出现的情况。重建算法假设对于弧步算法来说有足够的平滑度。我们发现重建算法在没有斜射线误差的情况下能够出色地获得正确的角膜形状。
具体的重建算法表明,仅从普拉西多环的反射就可以恢复正确的角膜形状。只要角膜在径向方向上具有足够的平滑度(这是所有重建算法共有的假设),去除斜射线模糊性就不需要飞镖靶图案。