Suppr超能文献

人U5小核核糖核蛋白特异性100-kD蛋白是一种含RS结构域的假定RNA解旋酶,与酵母剪接因子Prp28p具有显著同源性。

The human U5 snRNP-specific 100-kD protein is an RS domain-containing, putative RNA helicase with significant homology to the yeast splicing factor Prp28p.

作者信息

Teigelkamp S, Mundt C, Achsel T, Will C L, Lührmann R

机构信息

Institut für Molekularbiologie und Tumorforschung, Philipps-Universität Marburg, Germany.

出版信息

RNA. 1997 Nov;3(11):1313-26.

Abstract

Through UV-crosslinking experiments, we previously provided evidence suggesting that a U5 snRNP protein with a molecular weight in the 100-kDa range is an ATP-binding protein (Laggerbauer B, Lauber J, Lührmann R, 1996, Nucleic Acid Res 24:868-875). Separation of HeLa U5 snRNP proteins on 2D gels revealed multiple variants with apparent molecular masses of 100 kDa. Subsequent microsequencing of these variants led to the isolation of a cDNA encoding a protein with an N-terminal RS domain and a C-terminal domain that contains all of the conserved motifs characteristic of members of the DEAD-box family of RNA-stimulated ATPases and RNA helicases. Antibodies raised against cDNA-encoded 100-kDa protein specifically recognized native U5-100kD both on immunoblots and in purified HeLa U5 snRNPs or [U4/U6.U5] tri-snRNP complexes, confirming that the bona fide 100-kDa cDNA had been isolated. In vitro phosphorylation studies demonstrated that U5-100kD can serve as a substrate for both Clk/Sty and the U1 snRNP-associated kinase, and further suggested that the multiple U5-100kD variants observed on 2D gels represent differentially phosphorylated forms of the protein. A database homology search revealed a significant degree of homology (60% similarity, 37% identity) between the Saccharomyces cerevisiae splicing factor, Prp28p, which lacks an N-terminal RS domain, and the C-terminal domain of U5-100kD. Consistent with their designation as structural homologues, anti-Prp28 antibodies recognized specifically the human U5-100kD protein on immunoblots. Together with the DEXH-box U5-200kD protein (Lauber J et al., 1996, EMBO J 15:4001-4015), U5-100kD is the second example of a putative RNA helicase that is tightly associated with the U5 snRNP. Given the recent identification of the U5-116kD protein as a homologue of the ribosomal translocase EF-2 (Fabrizio P, Laggerbauer B, Lauber J, Lane WS, Lührmann R, 1997, EMBO J 16:4092-4106), at least three integral U5 snRNP proteins thus potentially facilitate conformational changes in the spliceosome during nuclear pre-mRNA splicing.

摘要

通过紫外线交联实验,我们之前提供的证据表明,一种分子量在100 kDa范围内的U5 snRNP蛋白是一种ATP结合蛋白(Laggerbauer B、Lauber J、Lührmann R,1996年,《核酸研究》24:868 - 875)。在二维凝胶上分离HeLa U5 snRNP蛋白,发现了多个表观分子量为100 kDa的变体。随后对这些变体进行微测序,分离出了一个cDNA,其编码的蛋白具有一个N端RS结构域和一个C端结构域,该C端结构域包含RNA刺激的ATP酶和RNA解旋酶的DEAD框家族成员所有的保守基序。针对cDNA编码的100 kDa蛋白产生的抗体,在免疫印迹以及纯化的HeLa U5 snRNPs或[U4/U6.U5]三snRNP复合物中,都能特异性识别天然的U5 - 100kD,这证实了已分离出真正的100 kDa cDNA。体外磷酸化研究表明,U5 - 100kD可作为Clk/Sty和U1 snRNP相关激酶的底物,进一步表明在二维凝胶上观察到的多个U5 - 100kD变体代表该蛋白的不同磷酸化形式。数据库同源性搜索显示,酿酒酵母剪接因子Prp28p(缺乏N端RS结构域)与U5 - 100kD的C端结构域之间存在显著的同源性(60%相似性,37%同一性)。与它们作为结构同源物的命名一致,抗Prp28抗体在免疫印迹上能特异性识别人类U5 - 100kD蛋白。与DEXH框U5 - 200kD蛋白(Lauber J等人,1996年,《欧洲分子生物学组织杂志》15:4001 - 4015)一起,U5 - 100kD是与U5 snRNP紧密相关的假定RNA解旋酶的第二个例子。鉴于最近鉴定出U5 - 116kD蛋白是核糖体转位酶EF - 2的同源物(Fabrizio P、Laggerbauer B、Lauber J、Lane WS、Lührmann R,1997年,《欧洲分子生物学组织杂志》),因此至少有三种U5 snRNP整合蛋白可能在核前体mRNA剪接过程中促进剪接体的构象变化。

相似文献

8
The human U5-200kD DEXH-box protein unwinds U4/U6 RNA duplices in vitro.
Proc Natl Acad Sci U S A. 1998 Apr 14;95(8):4188-92. doi: 10.1073/pnas.95.8.4188.

引用本文的文献

1
The implication of non-AUG-initiated N-terminally extended proteoforms in cancer.
RNA Biol. 2025 Dec;22(1):1-18. doi: 10.1080/15476286.2025.2498203. Epub 2025 Apr 29.
2
SRSF1 interactome determined by proximity labeling reveals direct interaction with spliceosomal RNA helicase DDX23.
Proc Natl Acad Sci U S A. 2024 May 21;121(21):e2322974121. doi: 10.1073/pnas.2322974121. Epub 2024 May 14.
3
RNA-binding proteins and exoribonucleases modulating miRNA in cancer: the enemy within.
Exp Mol Med. 2024 May;56(5):1080-1106. doi: 10.1038/s12276-024-01224-z. Epub 2024 May 1.
4
Molecular Modelling of NONO and SFPQ Dimerization Process and RNA Recognition Mechanism.
Int J Mol Sci. 2022 Jul 10;23(14):7626. doi: 10.3390/ijms23147626.
5
DEAD-ly Affairs: The Roles of DEAD-Box Proteins on HIV-1 Viral RNA Metabolism.
Front Cell Dev Biol. 2022 Jun 13;10:917599. doi: 10.3389/fcell.2022.917599. eCollection 2022.
6
Activation of Prp28 ATPase by phosphorylated Npl3 at a critical step of spliceosome remodeling.
Nat Commun. 2021 May 25;12(1):3082. doi: 10.1038/s41467-021-23459-4.
7
Structures of the human pre-catalytic spliceosome and its precursor spliceosome.
Cell Res. 2018 Dec;28(12):1129-1140. doi: 10.1038/s41422-018-0094-7. Epub 2018 Oct 12.
8
SNRP-27, the homolog of the tri-snRNP 27K protein, has a role in 5' splice site positioning in the spliceosome.
RNA. 2018 Oct;24(10):1314-1325. doi: 10.1261/rna.066878.118. Epub 2018 Jul 13.
9
SMA1, a homolog of the splicing factor Prp28, has a multifaceted role in miRNA biogenesis in Arabidopsis.
Nucleic Acids Res. 2018 Sep 28;46(17):9148-9159. doi: 10.1093/nar/gky591.
10
Dysregulation of spliceosome gene expression in advanced prostate cancer by RNA-binding protein PSF.
Proc Natl Acad Sci U S A. 2017 Sep 26;114(39):10461-10466. doi: 10.1073/pnas.1706076114. Epub 2017 Sep 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验