Pucciarelli S, Ballarini P, Miceli C
Dipartimento di Biologia Molecolare Cellulare e Animale, Università di Camerino, Italy.
Cell Motil Cytoskeleton. 1997;38(4):329-40. doi: 10.1002/(SICI)1097-0169(1997)38:4<329::AID-CM3>3.0.CO;2-Z.
In cold poikilotherm organisms, microtubule assembly is promoted at temperatures below 4 degrees C and cold-induced depolymerization is prevented. On the basis of the results of investigations on cold-adapted fishes, the property of cold adaptation is ascribed to intrinsic characteristics of the tubulins. To fully understand cold adaptation, we studied the tubulins of Euplotes focardii, an Antarctic ciliated protozoan adapted to temperatures ranging from -2 to +4 degrees C. In this organism, we had previously sequenced one beta-tubulin gene and, then identified three other genes (denoted as beta-T1, beta-T2, beta-T3 and beta-T4). Here we report that the amino acid sequence of the carboxy-terminal domain predicted from the beta-T3 gene (apparently the most expressed of the gene family) contains six modifications (five substitutions and one insertion) of conserved residues, unique with respect to all the other known beta-tubulin sequences. These modifications can change the structural conformation of the carboxy-terminal domain. Furthermore, in the variable terminal end of that domain, a consensus sequence for a phosphorylation site is present, and the residue Glu-438, the most frequent site for polyglutamylation in beta-tubulin, is substituted by Asp. Starting from these observations, we showed that in E. focardii only alpha-tubulin is polyglutamylated, while beta-tubulin undergoes phosphorylation. Polyglutamylated microtubules appear to colocalize with cilia and microtubular bundles, all structures in which microtubules undergo a sliding process. This finding supports the idea that alpha-tubulin polyglutamylation is involved in the interaction between tubulin and motor microtubule-associated proteins. Phosphorylation, usually a rare posttranslational modification of beta-tubulin, which is found extensively distributed in the beta-tubulin of this cold-adapted organism, may play a determinant role in the dynamic of polymerization and depolymerization at low temperatures.
在冷血变温生物中,微管组装在4摄氏度以下的温度时会被促进,并且冷诱导的解聚被阻止。基于对冷适应鱼类的研究结果,冷适应特性归因于微管蛋白的内在特征。为了全面了解冷适应,我们研究了福氏游仆虫(Euplotes focardii)的微管蛋白,这是一种适应-2至+4摄氏度温度范围的南极纤毛原生动物。在这种生物中,我们之前已经对一个β-微管蛋白基因进行了测序,然后又鉴定出了另外三个基因(分别表示为β-T1、β-T2、β-T3和β-T4)。在此我们报告,从β-T3基因(显然是该基因家族中表达最多的)预测的羧基末端结构域的氨基酸序列包含六个保守残基的修饰(五个替换和一个插入),这相对于所有其他已知的β-微管蛋白序列而言是独特的。这些修饰可以改变羧基末端结构域的结构构象。此外,在该结构域的可变末端,存在一个磷酸化位点的共有序列,并且β-微管蛋白中最常见的多聚谷氨酰化位点残基Glu-438被Asp取代。基于这些观察结果,我们表明在福氏游仆虫中只有α-微管蛋白发生多聚谷氨酰化,而β-微管蛋白发生磷酸化。多聚谷氨酰化的微管似乎与纤毛和微管束共定位,所有这些结构中的微管都会经历滑动过程。这一发现支持了α-微管蛋白多聚谷氨酰化参与微管蛋白与运动性微管相关蛋白之间相互作用的观点。磷酸化通常是β-微管蛋白一种罕见的翻译后修饰,在这种冷适应生物的β-微管蛋白中广泛分布,它可能在低温下的聚合和解聚动态中起决定性作用。