Suppr超能文献

Mutational analysis of the nucleotide binding sites of the yeast vacuolar proton-translocating ATPase.

作者信息

MacLeod K J, Vasilyeva E, Baleja J D, Forgac M

机构信息

Departments of Cellular and Molecular Physiology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA.

出版信息

J Biol Chem. 1998 Jan 2;273(1):150-6. doi: 10.1074/jbc.273.1.150.

Abstract

To further define the structure of the nucleotide binding sites on the vacuolar proton-translocating ATPase (V-ATPase), the role of aromatic residues at the catalytic sites was probed using site-directed mutagenesis of the VMA1 gene that encodes the A subunit in yeast. Substitutions were made at three positions (Phe452, Tyr532, and Phe538) that correspond to residues observed in the crystal structure of the homologous beta subunit of the bovine mitochondrial F-ATPase to be in proximity to the adenine ring of bound ATP. Although conservative substitutions at these positions had relatively little effect on V-ATPase activity, replacement with nonaromatic residues (such as alanine or serine) caused either a complete loss of activity (F452A) or a decrease in the affinity for ATP (Y532S and F538A). The F452A mutation also appeared to reduce stability of the V-ATPase complex. These results suggest that aromatic or hydrophobic residues at these positions are essential to maintain activity and/or high affinity binding to the catalytic sites of the V-ATPase. Site-directed mutations were also made at residues (Phe479 and Arg483) that are postulated to be contributed by the A subunit to the noncatalytic nucleotide binding sites. Generally, substitutions at these positions led to decreases in activity ranging from 30 to 70% relative to wild type as well as modest decreases in Km for ATP. Interestingly, the R483E and R483Q mutants showed a time-dependent increase in ATPase activity following addition of ATP, suggesting that events at the noncatalytic sites may modulate the catalytic activity of the enzyme.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验