Worsley K J, Poline J B, Friston K J, Evans A C
Department of Mathematics and Statistics, McGill University, 805 Sherbrooke Street West, Montreal, Québec, H3A 2K6, Canada.
Neuroimage. 1997 Nov;6(4):305-19. doi: 10.1006/nimg.1997.0294.
This paper presents a new method for characterizing brain responses in both PET and fMRI data. The aim is to capture the correlations between the scans of an experiment and a set of external predictor variables that are thought to affect the scans, such as type, intensity, or shape of stimulus response. Its main feature is a Canonical Variates Analysis (CVA) of the estimated effects of the predictors from a multivariate linear model (MLM). The advantage of this over current methods is that temporal correlations can be incorporated into the model, making the MLM method suitable for fMRI as well as PET data. Moreover, tests for the presence of any correlation, and inference about the number of canonical variates needed to capture that correlation, can be based on standard multivariate statistics, rather than simulations. When applied to an fMRI data set previously analyzed by another CVA method, the MLM method reveals a pattern of responses that is closer to that detected in an earlier non-CVA analysis.
本文提出了一种用于表征PET和fMRI数据中大脑反应的新方法。目的是捕捉实验扫描与一组被认为会影响扫描的外部预测变量之间的相关性,例如刺激反应的类型、强度或形状。其主要特征是对多元线性模型(MLM)中预测变量的估计效应进行典型变量分析(CVA)。与当前方法相比,这种方法的优势在于可以将时间相关性纳入模型,使得MLM方法适用于fMRI以及PET数据。此外,对于是否存在任何相关性的检验,以及关于捕捉该相关性所需典型变量数量的推断,可以基于标准的多元统计,而不是模拟。当应用于先前由另一种CVA方法分析过的fMRI数据集时,MLM方法揭示出一种更接近于早期非CVA分析中检测到的反应模式。