Burgess A
Center for Imaging Science, Rochester Institute of Technology, NY 14623-5604, USA.
Acad Radiol. 1995 Jun;2(6):522-6. doi: 10.1016/s1076-6332(05)80411-8.
The quality of medical images must be quantified with reference to specific diagnostic tasks. Image quality is limited by fundamental physics, engineering limitations, radiation safety concerns, and imaging time constraints (among other things). There is now a gold standard for assessing human visual decision performance: the ideal Bayesian observer. Unfortunately, there are no mathematical tools to use this gold standard for realistically complex tasks. As an alternative, one can use the optimum linear discriminator (Fisher-Hotelling) model as a silver standard while en route to clinical realism. The goal of scientists working in the area is to develop mathematical models of human observers that will help equipment designers to optimize design trade-offs for specific diagnostic tasks. The current strategy is to modify the Fisher-Hotelling model to include certain limitations of the human observer visual system. The model must be both robust enough and mathematically tractable enough to be used to predict performance for clinical classification and estimation tasks. Statistical models also must be developed that describe realistic signals (lesions and abnormalities) and the normal patient structure that is the background in which these signals must be detected or identified.
医学图像的质量必须参照特定的诊断任务进行量化。图像质量受到基础物理学、工程学限制、辐射安全问题以及成像时间限制(等等)的制约。目前存在一种评估人类视觉决策性能的金标准:理想贝叶斯观察者。遗憾的是,对于现实中复杂的任务,尚无数学工具可运用这一金标准。作为替代方案,在迈向临床实际应用的过程中,可以将最优线性判别器(费希尔 - 霍特林)模型用作银标准。该领域科学家的目标是开发人类观察者的数学模型,以帮助设备设计师针对特定诊断任务优化设计权衡。当前的策略是对费希尔 - 霍特林模型进行修改,使其纳入人类观察者视觉系统的某些局限性。该模型必须足够稳健且在数学上易于处理,以便用于预测临床分类和估计任务的性能。还必须开发统计模型,以描述现实中的信号(病变和异常)以及正常患者结构,这些信号必须在该结构背景中被检测或识别。