Suppr超能文献

Specificity and direction of depolymerization of beta-poly(L-malate) catalysed by polymalatase from Physarum polycephalum--fluorescence labeling at the carboxy-terminus of beta-poly(L-malate).

作者信息

Gasslmaier B, Holler E

机构信息

Institut für Biophysik und physikalische Biochemie der Universität Regensburg, Germany.

出版信息

Eur J Biochem. 1997 Dec 1;250(2):308-14. doi: 10.1111/j.1432-1033.1997.0308a.x.

Abstract

Beta-poly(L-malate), a major constituent of nuclei in plasmodia of Physarum polycephalum, is enzymatically degraded to L-malate after secretion into the culture medium. This depolymerization is specifically catalysed by an endogenous polymalatase. The mode of action and the specificity criteria have been investigated by employing various chemical derivatives of beta-poly(L-malate), including substitution at the hydroxy-terminus and carboxy-terminus of the polymer, esterification of the pending alpha-carboxylate, and beta-poly(DL-malate). The results of the investigation were summarized in a specificity model that involved recognition of the hydroxy-terminus and of the alpha-carboxylate as substituents of the asymmetric carbon in the malic acid unit. Depolymerization proceeded from the hydroxy-terminus towards the carboxy-terminus, thereby degrading the polymer to L-malate. When the terminal beta-carboxylate had been amidated with the fluorescent N-(1-naphthyl)ethylenediamine, degradation was normal but was arrested at the level of the terminal beta-carboxy-substituted dimer. It should be possible to employ polymalatase as a tool for the detection of branching and other modifications of beta-poly(L-malate).

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验