Suppr超能文献

用于脑肿瘤选择性成像和治疗的共价纳米递送系统。

Covalent nano delivery systems for selective imaging and treatment of brain tumors.

作者信息

Ljubimova Julia Y, Sun Tao, Mashouf Leila, Ljubimov Alexander V, Israel Liron L, Ljubimov Vladimir A, Falahatian Vida, Holler Eggehard

机构信息

Nanomedicine Research Center, Department of Neurosurgery, Cedars-Sinai Medical Center, 8700 Beverly Blvd., AHSP, Los Angeles, CA 90048, USA.

Nanomedicine Research Center, Department of Neurosurgery, Cedars-Sinai Medical Center, 8700 Beverly Blvd., AHSP, Los Angeles, CA 90048, USA.

出版信息

Adv Drug Deliv Rev. 2017 Apr;113:177-200. doi: 10.1016/j.addr.2017.06.002. Epub 2017 Jun 10.

Abstract

Nanomedicine is a rapidly evolving form of therapy that holds a great promise for superior drug delivery efficiency and therapeutic efficacy than conventional cancer treatment. In this review, we attempt to cover the benefits and the limitations of current nanomedicines with special attention to covalent nano conjugates for imaging and drug delivery in the brain. The improvement in brain tumor treatment remains dismal despite decades of efforts in drug development and patient care. One of the major obstacles in brain cancer treatment is the poor drug delivery efficiency owing to the unique blood-brain barrier (BBB) in the CNS. Although various anti-cancer agents are available to treat tumors outside of the CNS, the majority fails to cross the BBB. In this regard, nanomedicines have increasingly drawn attention due to their multi-functionality and versatility. Nano drugs can penetrate BBB and other biological barriers, and selectively accumulate in tumor cells, while concurrently decreasing systemic toxicity.

摘要

纳米医学是一种快速发展的治疗形式,与传统癌症治疗相比,它在提高药物递送效率和治疗效果方面具有巨大潜力。在这篇综述中,我们试图涵盖当前纳米药物的优点和局限性,特别关注用于脑部成像和药物递送的共价纳米缀合物。尽管在药物开发和患者护理方面经过了数十年的努力,但脑肿瘤治疗的改善仍然不尽人意。脑癌治疗的主要障碍之一是由于中枢神经系统中独特的血脑屏障(BBB)导致药物递送效率低下。尽管有各种抗癌药物可用于治疗中枢神经系统以外的肿瘤,但大多数药物无法穿过血脑屏障。在这方面,纳米药物因其多功能性和通用性而越来越受到关注。纳米药物可以穿透血脑屏障和其他生物屏障,并选择性地在肿瘤细胞中积累,同时降低全身毒性。

相似文献

1
Covalent nano delivery systems for selective imaging and treatment of brain tumors.
Adv Drug Deliv Rev. 2017 Apr;113:177-200. doi: 10.1016/j.addr.2017.06.002. Epub 2017 Jun 10.
2
Targeting Brain Tumors with Nanomedicines: Overcoming Blood Brain Barrier Challenges.
Curr Clin Pharmacol. 2018;13(2):110-119. doi: 10.2174/1574884713666180412150153.
3
Drug delivery and targeting to brain tumors: considerations for crossing the blood-brain barrier.
Expert Rev Clin Pharmacol. 2021 Mar;14(3):357-381. doi: 10.1080/17512433.2021.1887729. Epub 2021 Mar 8.
4
Cellular and Molecular Targeted Drug Delivery in Central Nervous System Cancers: Advances in Targeting Strategies.
Curr Top Med Chem. 2020;20(30):2762-2776. doi: 10.2174/1568026620666200826122402.
6
Emerging blood-brain-barrier-crossing nanotechnology for brain cancer theranostics.
Chem Soc Rev. 2019 Jun 4;48(11):2967-3014. doi: 10.1039/c8cs00805a.
8
Delivery across the blood-brain barrier: nanomedicine for glioblastoma multiforme.
Drug Deliv Transl Res. 2020 Apr;10(2):304-318. doi: 10.1007/s13346-019-00679-2.
9
Drug delivery systems for brain tumor therapy.
Curr Pharm Des. 2004;10(12):1341-53. doi: 10.2174/1381612043384916.

引用本文的文献

1
Targeting Tumor-Associated Carbonic Anhydrases in Photothermal Therapy.
ChemMedChem. 2025 Apr 14;20(8):e202400893. doi: 10.1002/cmdc.202400893. Epub 2025 Feb 23.
2
Hypoxia-Initiated Supramolecular Free Radicals Induce Intracellular Polymerization for Precision Tumor Therapy.
J Am Chem Soc. 2025 Jan 29;147(4):3488-3499. doi: 10.1021/jacs.4c14847. Epub 2025 Jan 13.
3
New insights into targeted therapy of glioblastoma using smart nanoparticles.
Cancer Cell Int. 2024 May 7;24(1):160. doi: 10.1186/s12935-024-03331-3.
5
Positive regulators of T cell functions as predictors of prognosis and microenvironment characteristics of low-grade gliomas.
Front Immunol. 2023 Jan 16;13:1089792. doi: 10.3389/fimmu.2022.1089792. eCollection 2022.
6
Anti-Hormonal Therapy in Breast Cancer and Its Effect on the Blood-Brain Barrier.
Cancers (Basel). 2022 Oct 19;14(20):5132. doi: 10.3390/cancers14205132.
7
Enhanced anti-glioma efficacy of doxorubicin with BRD4 PROTAC degrader using targeted nanoparticles.
Mater Today Bio. 2022 Sep 12;16:100423. doi: 10.1016/j.mtbio.2022.100423. eCollection 2022 Dec.
8
A mitochondria-targeting lipid-small molecule hybrid nanoparticle for imaging and therapy in an orthotopic glioma model.
Acta Pharm Sin B. 2022 Jun;12(6):2672-2682. doi: 10.1016/j.apsb.2022.04.005. Epub 2022 Apr 14.
9
Polymalic acid for translational nanomedicine.
J Nanobiotechnology. 2022 Jun 21;20(1):295. doi: 10.1186/s12951-022-01497-4.

本文引用的文献

2
A STING-activating nanovaccine for cancer immunotherapy.
Nat Nanotechnol. 2017 Jul;12(7):648-654. doi: 10.1038/nnano.2017.52. Epub 2017 Apr 24.
3
Mechanisms and Barriers in Cancer Nanomedicine: Addressing Challenges, Looking for Solutions.
ACS Nano. 2017 Jan 24;11(1):12-18. doi: 10.1021/acsnano.6b08244. Epub 2017 Jan 9.
4
Systemic therapy of brain metastases: non-small cell lung cancer, breast cancer, and melanoma.
Neuro Oncol. 2017 Jan;19(1):i1-i24. doi: 10.1093/neuonc/now197.
5
Cornerstones of CRISPR-Cas in drug discovery and therapy.
Nat Rev Drug Discov. 2017 Feb;16(2):89-100. doi: 10.1038/nrd.2016.238. Epub 2016 Dec 23.
6
Nanoparticle engineered TRAIL-overexpressing adipose-derived stem cells target and eradicate glioblastoma via intracranial delivery.
Proc Natl Acad Sci U S A. 2016 Nov 29;113(48):13857-13862. doi: 10.1073/pnas.1615396113. Epub 2016 Nov 14.
7
Cancer nanomedicine: progress, challenges and opportunities.
Nat Rev Cancer. 2017 Jan;17(1):20-37. doi: 10.1038/nrc.2016.108. Epub 2016 Nov 11.
9
Multimodality imaging in nanomedicine and nanotheranostics.
Cancer Biol Med. 2016 Sep;13(3):339-348. doi: 10.20892/j.issn.2095-3941.2016.0055.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验