Suppr超能文献

线性房室模型的全局可识别性——一种计算机代数算法

Global identifiability of linear compartmental models--a computer algebra algorithm.

作者信息

Audoly S, D'Angiò L, Saccomani M P, Cobelli C

机构信息

Department of Structural Engineering, University of Cagliari, Italy.

出版信息

IEEE Trans Biomed Eng. 1998 Jan;45(1):36-47. doi: 10.1109/10.650350.

Abstract

A priori global identifiability deals with the uniqueness of the solution for the unknown parameters of a model and is, thus, a prerequisite for parameter estimation of biological dynamic models. Global identifiability is however difficult to test, since it requires solving a system of algebraic nonlinear equations which increases both in nonlinearity degree and number of terms and unknowns with increasing model order. In this paper, a computer algebra tool, GLOBI (GLOBal Identifiability) is presented, which combines the topological transfer function method with the Buchberger algorithm, to test global identifiability of linear compartmental models. GLOBI allows for the automatic testing of a priori global identifiability of general structure compartmental models from general multi input-multi output experiments. Examples of usage of GLOBI to analyze a priori global identifiability of some complex biological compartmental models are provided.

摘要

先验全局可识别性涉及模型未知参数解的唯一性,因此是生物动力学模型参数估计的先决条件。然而,全局可识别性很难检验,因为它需要求解一个代数非线性方程组,随着模型阶数的增加,该方程组的非线性程度、项数和未知数都会增加。本文提出了一种计算机代数工具GLOBI(全局可识别性),它将拓扑传递函数方法与布赫贝尔格算法相结合,用于检验线性隔室模型的全局可识别性。GLOBI允许从一般的多输入多输出实验中自动检验一般结构隔室模型的先验全局可识别性。文中提供了使用GLOBI分析一些复杂生物隔室模型先验全局可识别性的示例。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验