Suppr超能文献

用高斯噪声剖析青蛙内耳。I. 高阶维纳核分析的应用。

Dissecting the frog inner ear with Gaussian noise. I. Application of high-order Wiener-kernel analysis.

作者信息

van Dijk P, Wit H P, Segenhout J M

机构信息

ENT Department, Audiology, University Hospital Groningen, The Netherlands.

出版信息

Hear Res. 1997 Dec;114(1-2):229-42. doi: 10.1016/s0378-5955(97)00168-8.

Abstract

Wiener kernel analysis was used to characterize the auditory pathway from tympanic membrane to single primary auditory nerve fibers in the European edible frog, Rana esculenta. Nerve fiber signals were recorded in response to white Gaussian noise. By cross-correlating the noise stimulus and the nerve fiber response, we computed (1) the full second-order Wiener kernel, and (2) the diagonals of the zeroth- to fourth-order Wiener kernels. These diagonals are usually referred to as polynomial correlation functions. The measured Wiener kernels were fitted with a 'sandwich' model. A new fitting procedure was used to compute the response characteristics of (1) the first filter, (2) the static nonlinearity, and (3) the second filter, which form the functional components of the model. The first filter is a bandpass filter. In the majority of low frequency fibers, with best excitatory frequency (BEF) < 800 Hz, this filter was tuned to two frequencies. This dual tuning mechanism gives rise to 'off-diagonal' components in the second-order Wiener kernel. The static nonlinearity resembles a rectifier, and is dominated by second-order (quadratic) nonlinearity. As a function of BEF, the shape of the nonlinearity changes systematically. Finally, the last filter in the model was a low pass filter. Across fibers, its cutoff frequency f-3dB ranged from 106 to 434 Hz.

摘要

维纳核分析被用于表征欧洲食用蛙(泽蛙)从鼓膜到单个初级听神经纤维的听觉通路。记录神经纤维对白色高斯噪声的信号响应。通过将噪声刺激与神经纤维响应进行互相关,我们计算了:(1)完整的二阶维纳核,以及(2)零阶到四阶维纳核的对角线。这些对角线通常被称为多项式相关函数。所测量的维纳核用一个“三明治”模型进行拟合。采用一种新的拟合程序来计算构成该模型功能组件的(1)第一个滤波器、(2)静态非线性和(3)第二个滤波器的响应特性。第一个滤波器是一个带通滤波器。在大多数最佳兴奋频率(BEF)<800Hz的低频纤维中,该滤波器被调谐到两个频率。这种双重调谐机制在二阶维纳核中产生了“非对角线”成分。静态非线性类似于一个整流器,并且主要由二阶(二次)非线性主导。作为BEF的函数,非线性的形状会系统性地变化。最后,模型中的最后一个滤波器是一个低通滤波器。在所有纤维中,其截止频率f-3dB范围为106至434Hz。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验