Suppr超能文献

Thermal stability of apolipoprotein B100 in low-density lipoprotein is disrupted at early stages of oxidation while neutral lipid core organization is conserved.

作者信息

Prassl R, Schuster B, Laggner P, Flamant C, Nigon F, Chapman M J

机构信息

Institute of Biophysics, Austrian Academy of Sciences, Graz.

出版信息

Biochemistry. 1998 Jan 20;37(3):938-44. doi: 10.1021/bi971853f.

Abstract

The time course of the unfolding characteristics of the protein moiety and of the thermotropic behavior of the core-located apolar lipids of highly homogeneous low-density lipoprotein (LDL) subspecies (d 1.030-1.040 g/mL) have been evaluated during transition metal- and azo radical-induced oxidation using differential scanning calorimetry. Apolipoprotein B100 (apo-B100) structure was highly sensitive to oxidative modification; indeed, a significant loss of thermal stability was observed at initial stages irrespective of whether oxidation was mediated by site-specific binding of copper ions or by free radicals generated during decomposition of azo compounds. Subsequently, thermal protein integrity was destroyed, as a result of potentially irreversible protein unfolding, cross-linking reactions, and aggregation. Our results suggest that even minimal oxidative modification of apo-B100 has a major impact on the stability of this large monomeric protein. By contrast, the core lipids, which consist primarily of cholesteryl esters and triglycerides and play a determinant role in the thermal transition occurring near physiological temperature, preserved features of an ordered arrangement even during propagation of lipid peroxidation.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验