Prassl R, Schuster B, Laggner P, Flamant C, Nigon F, Chapman M J
Institute of Biophysics, Austrian Academy of Sciences, Graz.
Biochemistry. 1998 Jan 20;37(3):938-44. doi: 10.1021/bi971853f.
The time course of the unfolding characteristics of the protein moiety and of the thermotropic behavior of the core-located apolar lipids of highly homogeneous low-density lipoprotein (LDL) subspecies (d 1.030-1.040 g/mL) have been evaluated during transition metal- and azo radical-induced oxidation using differential scanning calorimetry. Apolipoprotein B100 (apo-B100) structure was highly sensitive to oxidative modification; indeed, a significant loss of thermal stability was observed at initial stages irrespective of whether oxidation was mediated by site-specific binding of copper ions or by free radicals generated during decomposition of azo compounds. Subsequently, thermal protein integrity was destroyed, as a result of potentially irreversible protein unfolding, cross-linking reactions, and aggregation. Our results suggest that even minimal oxidative modification of apo-B100 has a major impact on the stability of this large monomeric protein. By contrast, the core lipids, which consist primarily of cholesteryl esters and triglycerides and play a determinant role in the thermal transition occurring near physiological temperature, preserved features of an ordered arrangement even during propagation of lipid peroxidation.