Suppr超能文献

内源性超氧化物歧化酶水平调节暴露于过氧化氢的大肠杆菌中铁依赖性羟基自由基的形成。

Endogenous superoxide dismutase levels regulate iron-dependent hydroxyl radical formation in Escherichia coli exposed to hydrogen peroxide.

作者信息

McCormick M L, Buettner G R, Britigan B E

机构信息

Department of Internal Medicine, VA Medical Center, Iowa City, Iowa 52246, USA.

出版信息

J Bacteriol. 1998 Feb;180(3):622-5. doi: 10.1128/JB.180.3.622-625.1998.

Abstract

Aerobic organisms contain antioxidant enzymes, such as superoxide dismutase (SOD) and catalase, to protect them from both direct and indirect effects of reactive oxygen species, such as O2.- and H2O2. Previous work by others has shown that Escherichia coli mutants lacking SOD not only are more susceptible to DNA damage and killing by H2O2 but also contain larger pools of intracellular free iron. The present study investigated if SOD-deficient E. coli cells are exposed to increased levels of hydroxyl radical (.OH) as a consequence of the reaction of H2O2 with this increased iron pool. When the parental E. coli strain AB1157 was exposed to H2O2 in the presence of an alpha-(4-pyridyl-1-oxide)-N-tert-butyl-nitrone (4-POBN)-ethanol spin-trapping system, the 4-POBN-.CH(CH3)OH spin adduct was detectable by electron paramagnetic resonance (EPR) spectroscopy, indicating .OH production. When the isogenic E. coli mutant JI132, lacking both Fe- and Mn-containing SODs, was exposed to H2O2 in a similar manner, the magnitude of .OH spin trapped was significantly greater than with the control strain. Preincubation of the bacteria with the iron chelator deferoxamine markedly inhibited the magnitude of .OH spin trapped. Exogenous SOD failed to inhibit .OH formation, indicating the need for intracellular SOD. Redox-active iron, defined as EPR-detectable ascorbyl radical, was greater in the SOD-deficient strain than in the control strain. These studies (i) extend recent data from others demonstrating increased levels of iron in E. coli SOD mutants and (ii) support the hypothesis that a resulting increase in .OH formation generated by Fenton chemistry is responsible for the observed enhancement of DNA damage and the increased susceptibility to H2O2-mediated killing seen in these mutants lacking SOD.

摘要

需氧生物含有抗氧化酶,如超氧化物歧化酶(SOD)和过氧化氢酶,以保护它们免受活性氧(如超氧阴离子O₂⁻和过氧化氢H₂O₂)的直接和间接影响。其他人之前的研究表明,缺乏SOD的大肠杆菌突变体不仅更容易受到H₂O₂造成的DNA损伤和杀伤,而且细胞内游离铁池更大。本研究调查了缺乏SOD的大肠杆菌细胞是否由于H₂O₂与增加的铁池反应而暴露于更高水平的羟基自由基(·OH)。当亲本大肠杆菌菌株AB1157在α-(4-吡啶基-1-氧化物)-N-叔丁基硝酮(4-POBN)-乙醇自旋捕获系统存在下暴露于H₂O₂时,通过电子顺磁共振(EPR)光谱可检测到4-POBN-·CH(CH₃)OH自旋加合物,表明有·OH产生。当缺乏含Fe和Mn的SOD的同基因大肠杆菌突变体JI132以类似方式暴露于H₂O₂时,捕获的·OH自旋量明显大于对照菌株。用铁螯合剂去铁胺对细菌进行预孵育可显著抑制捕获的·OH量。外源性SOD未能抑制·OH的形成,表明需要细胞内SOD。定义为EPR可检测的抗坏血酸自由基的氧化还原活性铁在缺乏SOD的菌株中比对照菌株中更多。这些研究(i)扩展了其他人最近的数据,证明大肠杆菌SOD突变体中铁水平增加,并且(ii)支持这样的假设,即由芬顿化学产生的·OH形成增加导致了在这些缺乏SOD的突变体中观察到的DNA损伤增强和对H₂O₂介导的杀伤敏感性增加。

相似文献

6
Copper, zinc superoxide dismutase catalyzes hydroxyl radical production from hydrogen peroxide.
Proc Natl Acad Sci U S A. 1990 Jul;87(13):5006-10. doi: 10.1073/pnas.87.13.5006.
7
Binding of myeloperoxidase to bacteria: effect on hydroxyl radical formation and susceptibility to oxidant-mediated killing.
Biochim Biophys Acta. 1996 Aug 13;1290(3):231-40. doi: 10.1016/0304-4165(96)00014-1.
10
Hydroxyl radical generation by photosystem II.
Biochemistry. 2004 Jun 1;43(21):6783-92. doi: 10.1021/bi036219i.

引用本文的文献

1
Metal Ions Modify In Vitro DNA Damage Yields with High-LET Radiation.
Toxics. 2023 Sep 12;11(9):773. doi: 10.3390/toxics11090773.
4
Coping with Reactive Oxygen Species to Ensure Genome Stability in .
Genes (Basel). 2018 Nov 21;9(11):565. doi: 10.3390/genes9110565.
5
Iron chelation increases the tolerance of Escherichia coli to hyper-replication stress.
Sci Rep. 2018 Jul 12;8(1):10550. doi: 10.1038/s41598-018-28841-9.
6
Involvement of multiple stressors induced by non-thermal plasma-charged aerosols during inactivation of airborne bacteria.
PLoS One. 2017 Feb 6;12(2):e0171434. doi: 10.1371/journal.pone.0171434. eCollection 2017.
7
Macrophage effector responses of horses are influenced by expression of CD154.
Vet Immunol Immunopathol. 2016 Nov 1;180:40-44. doi: 10.1016/j.vetimm.2016.08.001. Epub 2016 Aug 26.
9
Metal ions, not metal-catalyzed oxidative stress, cause clay leachate antibacterial activity.
PLoS One. 2014 Dec 11;9(12):e115172. doi: 10.1371/journal.pone.0115172. eCollection 2014.
10
Gimme shelter: how Vibrio fischeri successfully navigates an animal's multiple environments.
Front Microbiol. 2013 Nov 29;4:356. doi: 10.3389/fmicb.2013.00356. eCollection 2013.

本文引用的文献

1
Role of oxidants in microbial pathophysiology.
Clin Microbiol Rev. 1997 Jan;10(1):1-18. doi: 10.1128/CMR.10.1.1.
2
Superoxide accelerates DNA damage by elevating free-iron levels.
Proc Natl Acad Sci U S A. 1996 Nov 26;93(24):13635-40. doi: 10.1073/pnas.93.24.13635.
3
Binding of myeloperoxidase to bacteria: effect on hydroxyl radical formation and susceptibility to oxidant-mediated killing.
Biochim Biophys Acta. 1996 Aug 13;1290(3):231-40. doi: 10.1016/0304-4165(96)00014-1.
5
Thiol groups are involved in NADH-ascorbate free radical reductase activity of rat liver plasma membrane.
Biochem Biophys Res Commun. 1993 Apr 30;192(2):707-13. doi: 10.1006/bbrc.1993.1472.
6
Modulation of the fumarases of Escherichia coli in response to oxidative stress.
Arch Biochem Biophys. 1993 Mar;301(2):379-84. doi: 10.1006/abbi.1993.1159.
7
Ascorbate free radical as a marker of oxidative stress: an EPR study.
Free Radic Biol Med. 1993 Jan;14(1):49-55. doi: 10.1016/0891-5849(93)90508-r.
8
The role of O2.- in the production of HO.: in vitro and in vivo.
Free Radic Biol Med. 1994 Jan;16(1):29-33. doi: 10.1016/0891-5849(94)90239-9.
10
Superoxide and the production of oxidative DNA damage.
J Bacteriol. 1995 Dec;177(23):6782-90. doi: 10.1128/jb.177.23.6782-6790.1995.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验