Suppr超能文献

Reversible inhibition can profoundly mislead studies on progressive inhibition of enzymes: the interaction of paraoxon with soluble neuropathy target esterase.

作者信息

Barril J, Vilanova E

机构信息

Universidad Miguel Hernández, Laboratorio de Neurotoxicología, Alicante, Spain.

出版信息

Chem Biol Interact. 1997 Dec 12;108(1-2):19-25. doi: 10.1016/s0009-2797(97)00088-4.

Abstract

Neuropathy target esterase (NTE) is suggested to be the molecular target for the initiation of the organophosphorus induced delayed polyneuropathy (OPIDP). O,O'-diethyl p-nitrophenyl phosphate (paraoxon) was the non-neurotoxic OP of choice for the standard assay of NTE to block the non-relevant esterases (phenylvalerate hydrolases) because it was supposed not to inhibit the enzymic activity of the target protein while N,N'-diisopropyl phosphorodiamidofluoridate (mipafox) is the neuropathic OP used to inhibit (and so to detect) NTE activity. A soluble form of NTE (S-NTE) had previously been described in peripheral nerve which showed a different inhibitor response from that of the particulate NTE (P-NTE). The use of a sequential type of inhibition protocol revealed the presence of an activity component within S-NTE which was extremely sensitive to different esterase inhibitors. Such a soluble activity component remained hidden under the usual concurrent inhibition procedure with paraoxon and was about one order of magnitude more sensitive than P-NTE to the inhibitors studied in the present article. Our results suggest that paraoxon could produce a strong reversible effect on S-NTE when the concurrent procedure is used so that it interferes with its inhibition by both neuropathy inducers and promoters. As a result S-NTE seems to be much more sensitive, than previously believed, to several esterase inhibitors involved in either the genesis of delayed polyneuropathy and/or axonopathy promotion.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验