Kosugi Y, Sase M, Suganami Y, Uemoto N, Momose T, Nishikawa J
Tokyo Institute of Technology, Yokohama, Japan.
Methods Inf Med. 1997 Dec;36(4-5):329-31.
In PET image analysis, conventional deconvolution alone will not give sufficient information for a precise study of a localized brain function. In the deconvolution process, which is a type of inverse problem, it is important to confine the solution space by incorporating a priori knowledge such as the tissue distribution given by MR images as well as smoothness in the blood flow distribution profile. An MR-embedded neural-network model is described to reduce the partial volume effect in the restoration of blood flow profiles from PET images.
在PET图像分析中,仅靠传统的反卷积无法为精确研究局部脑功能提供足够的信息。在作为一种逆问题的反卷积过程中,通过纳入先验知识(如MR图像给出的组织分布以及血流分布曲线的平滑性)来限制解空间很重要。本文描述了一种嵌入MR的神经网络模型,以减少PET图像血流曲线恢复中的部分容积效应。