Suppr超能文献

利用解剖磁共振信息对正电子发射断层扫描图像进行期望最大化重建。

Expectation maximization reconstruction of positron emission tomography images using anatomical magnetic resonance information.

作者信息

Lipinski B, Herzog H, Rota Kops E, Oberschelp W, Müller-Gärtner H W

机构信息

Institute of Medicine, Research Centre Jülich GmbH, Germany.

出版信息

IEEE Trans Med Imaging. 1997 Apr;16(2):129-36. doi: 10.1109/42.563658.

Abstract

Using statistical methods the reconstruction of positron emission tomography (PET) images can be improved by high-resolution anatomical information obtained from magnetic resonance (MR) images. We implemented two approaches that utilize MR data for PET reconstruction. The anatomical MR information is modeled as a priori distribution of the PET image and combined with the distribution of the measured PET data to generate the a posteriori function from which the expectation maximization (EM)-type algorithm with a maximum a posteriori (MAP) estimator is derived. One algorithm (Markov-GEM) uses a Gibbs function to model interactions between neighboring pixels within the anatomical regions. The other (Gauss-EM) applies a Gauss function with the same mean for all pixels in a given anatomical region. A basic assumption of these methods is that the radioactivity is homogeneously distributed inside anatomical regions. Simulated and phantom data are investigated under the following aspects: count density, object size, missing anatomical information, and misregistration of the anatomical information. Compared with the maximum likelihood-expectation maximization (ML-EM) algorithm the results of both algorithms show a large reduction of noise with a better delineation of borders. Of the two algorithms tested, the Gauss-EM method is superior in noise reduction (up to 50%). Regarding incorrect a priori information the Gauss-EM algorithm is very sensitive, whereas the Markov-GEM algorithm proved to be stable with a small change of recovery coefficients between 0.5 and 3%.

摘要

使用统计方法,通过从磁共振(MR)图像中获取的高分辨率解剖信息,可以改善正电子发射断层扫描(PET)图像的重建。我们实现了两种利用MR数据进行PET重建的方法。解剖学MR信息被建模为PET图像的先验分布,并与测量的PET数据分布相结合,以生成后验函数,从中推导出带有最大后验(MAP)估计器的期望最大化(EM)型算法。一种算法(马尔可夫 - GEM)使用吉布斯函数对解剖区域内相邻像素之间的相互作用进行建模。另一种(高斯 - EM)对给定解剖区域内的所有像素应用具有相同均值的高斯函数。这些方法的一个基本假设是放射性在解剖区域内均匀分布。从以下几个方面对模拟数据和体模数据进行了研究:计数密度、物体大小、缺失的解剖信息以及解剖信息的配准错误。与最大似然期望最大化(ML - EM)算法相比,两种算法的结果都显示出噪声大幅降低,边界描绘得更好。在测试的两种算法中,高斯 - EM方法在降噪方面更优(高达50%)。对于不正确的先验信息,高斯 - EM算法非常敏感,而马尔可夫 - GEM算法被证明是稳定的,恢复系数在0.5%至3%之间有小的变化。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验