Suppr超能文献

一种用于多分子序列比对的遗传算法。

A genetic algorithm for multiple molecular sequence alignment.

作者信息

Zhang C, Wong A K

机构信息

Department of Systems Design Engineering, University of Waterloo, Ontario, Canada.

出版信息

Comput Appl Biosci. 1997 Dec;13(6):565-81. doi: 10.1093/bioinformatics/13.6.565.

Abstract

MOTIVATION

Multiple molecular sequence alignment is among the most important and most challenging tasks in computational biology. The currently used alignment techniques are characterized by great computational complexity, which prevents their wider use. This research is aimed at developing a new technique for efficient multiple sequence alignment.

APPROACH

The new method is based on genetic algorithms. Genetic algorithms are stochastic approaches for efficient and robust searching. By converting biomolecular sequence alignment into a problem of searching for optimal or near-optimal points in an 'alignment space', a genetic algorithm can be used to find good alignments very efficiently.

RESULTS

Experiments on real data sets have shown that the average computing time of this technique may be two or three orders lower than that of a technique based on pairwise dynamic programming, while the alignment qualities are very similar.

AVAILABILITY

A C program on UNIX has been written to implement the technique. It is available on request from the authors.

摘要

动机

多分子序列比对是计算生物学中最重要且最具挑战性的任务之一。当前使用的比对技术具有很高的计算复杂度,这阻碍了它们的更广泛应用。本研究旨在开发一种高效的多序列比对新技术。

方法

新方法基于遗传算法。遗传算法是用于高效且稳健搜索的随机方法。通过将生物分子序列比对转化为在“比对空间”中寻找最优或接近最优解的问题,遗传算法可非常高效地找到良好的比对结果。

结果

对真实数据集的实验表明,该技术的平均计算时间可能比基于两两动态规划的技术低两到三个数量级,而比对质量非常相似。

可用性

已编写一个UNIX系统下的C程序来实现该技术。可向作者索取。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验