Miech C, Dierks T, Selmer T, von Figura K, Schmidt B
Georg-August-Universität, Abt. Biochemie II, Gosslerstrasse 12d, D-37073 Göttingen, Germany.
J Biol Chem. 1998 Feb 27;273(9):4835-7. doi: 10.1074/jbc.273.9.4835.
Eukaryotic sulfatases share an unusual posttranslational protein modification, which converts a cysteine into alpha-formylglycine. The alpha-formylglycine is essential for the catalytic activity. Klebsiella pneumoniae expresses an inducible arylsulfatase for which the DNA predicts a serine at the position occupied by the alpha-formylglycine residue in eukaryotic sulfatases. Structural analysis showed that the majority of the arylsulfatase polypeptides from K. pneumoniae carries the alpha-formylglycine, whereas the remaining arylsulfatase polypeptides contain the predicted serine residue. This demonstrates the evolutionary conservation between prokaryotes and eukaryotes of this novel protein modification that so far has been found only in sulfatases. alpha-Formylglycine in Klebsiella is generated from a serine and not from a cysteine as in eukaryotes.
真核生物硫酸酯酶具有一种不寻常的翻译后蛋白质修饰,该修饰可将半胱氨酸转化为α-甲酰甘氨酸。α-甲酰甘氨酸对于催化活性至关重要。肺炎克雷伯菌表达一种可诱导的芳基硫酸酯酶,其DNA预测在真核生物硫酸酯酶中由α-甲酰甘氨酸残基占据的位置上为丝氨酸。结构分析表明,肺炎克雷伯菌的大多数芳基硫酸酯酶多肽携带α-甲酰甘氨酸,而其余的芳基硫酸酯酶多肽含有预测的丝氨酸残基。这证明了这种迄今为止仅在硫酸酯酶中发现的新型蛋白质修饰在原核生物和真核生物之间的进化保守性。肺炎克雷伯菌中的α-甲酰甘氨酸是由丝氨酸而非真核生物中的半胱氨酸产生的。