Suppr超能文献

匹配硫酸化生物分子的多样性:创建一个反映硫酸酯酶底物特异性的分类数据库。

Matching the Diversity of Sulfated Biomolecules: Creation of a Classification Database for Sulfatases Reflecting Their Substrate Specificity.

作者信息

Barbeyron Tristan, Brillet-Guéguen Loraine, Carré Wilfrid, Carrière Cathelène, Caron Christophe, Czjzek Mirjam, Hoebeke Mark, Michel Gurvan

机构信息

Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, Roscoff, Bretagne, France.

CNRS FR 2424, Sorbonne Universités, UPMC Univ Paris 06, FR2424, ABiMS platform, Station Biologique de Roscoff, CS 90074, Roscoff, Bretagne, France.

出版信息

PLoS One. 2016 Oct 17;11(10):e0164846. doi: 10.1371/journal.pone.0164846. eCollection 2016.

Abstract

Sulfatases cleave sulfate groups from various molecules and constitute a biologically and industrially important group of enzymes. However, the number of sulfatases whose substrate has been characterized is limited in comparison to the huge diversity of sulfated compounds, yielding functional annotations of sulfatases particularly prone to flaws and misinterpretations. In the context of the explosion of genomic data, a classification system allowing a better prediction of substrate specificity and for setting the limit of functional annotations is urgently needed for sulfatases. Here, after an overview on the diversity of sulfated compounds and on the known sulfatases, we propose a classification database, SulfAtlas (http://abims.sb-roscoff.fr/sulfatlas/), based on sequence homology and composed of four families of sulfatases. The formylglycine-dependent sulfatases, which constitute the largest family, are also divided by phylogenetic approach into 73 subfamilies, each subfamily corresponding to either a known specificity or to an uncharacterized substrate. SulfAtlas summarizes information about the different families of sulfatases. Within a family a web page displays the list of its subfamilies (when they exist) and the list of EC numbers. The family or subfamily page shows some descriptors and a table with all the UniProt accession numbers linked to the databases UniProt, ExplorEnz, and PDB.

摘要

硫酸酯酶可从各种分子中裂解硫酸基团,是一类在生物学和工业上都很重要的酶。然而,与众多硫酸化化合物的多样性相比,其底物已被表征的硫酸酯酶数量有限,这使得硫酸酯酶的功能注释特别容易出现缺陷和误解。在基因组数据激增的背景下,迫切需要一个分类系统,以便更好地预测硫酸酯酶的底物特异性并设定功能注释的界限。在此,在概述了硫酸化化合物的多样性和已知的硫酸酯酶之后,我们提出了一个基于序列同源性的分类数据库SulfAtlas(http://abims.sb-roscoff.fr/sulfatlas/),它由四个硫酸酯酶家族组成。依赖于甲酰甘氨酸的硫酸酯酶是最大的家族,通过系统发育方法也被分为73个亚家族,每个亚家族对应一种已知的特异性或一种未表征的底物。SulfAtlas总结了有关不同硫酸酯酶家族的信息。在一个家族中,网页会显示其亚家族列表(如果存在)和酶委员会编号列表。家族或亚家族页面会显示一些描述符以及一个表格,其中包含所有与UniProt、ExplorEnz和PDB数据库链接的UniProt登录号。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb01/5066984/50be4fffa953/pone.0164846.g001.jpg

相似文献

2
SulfAtlas, the sulfatase database: state of the art and new developments.
Nucleic Acids Res. 2023 Jan 6;51(D1):D647-D653. doi: 10.1093/nar/gkac977.
4
Fucoidan Sulfatases from Marine Bacterium Wenyingzhuangia fucanilytica CZ1127.
Biomolecules. 2018 Sep 21;8(4):98. doi: 10.3390/biom8040098.
5
Sulfotransferases and sulfatases in mycobacteria.
Chem Biol. 2002 Jul;9(7):767-76. doi: 10.1016/s1074-5521(02)00175-8.
6
Mycobacterium tuberculosis Rv3406 is a type II alkyl sulfatase capable of sulfate scavenging.
PLoS One. 2013 Jun 6;8(6):e65080. doi: 10.1371/journal.pone.0065080. Print 2013.
7
Sulfated glycan recognition by carbohydrate sulfatases of the human gut microbiota.
Nat Chem Biol. 2022 Aug;18(8):841-849. doi: 10.1038/s41589-022-01039-x. Epub 2022 Jun 16.
8
Sulfotransferases, sulfatases and formylglycine-generating enzymes: a sulfation fascination.
Curr Opin Chem Biol. 2008 Oct;12(5):573-81. doi: 10.1016/j.cbpa.2008.06.018.
10
The Molecular Basis of Polysaccharide Sulfatase Activity and a Nomenclature for Catalytic Subsites in this Class of Enzyme.
Structure. 2018 May 1;26(5):747-758.e4. doi: 10.1016/j.str.2018.03.012. Epub 2018 Apr 19.

引用本文的文献

1
Arylsulfamates inhibit colonic Bacteroidota growth through a sulfatase-independent mechanism.
Proc Natl Acad Sci U S A. 2025 Jul 15;122(28):e2414331122. doi: 10.1073/pnas.2414331122. Epub 2025 Jul 10.
2
Comparative metagenomics indicates metabolic niche differentiation of benthic and planktonic Woeseiaceae.
Environ Microbiome. 2025 Jun 17;20(1):74. doi: 10.1186/s40793-025-00732-3.
4
Identification and Characterization of a New Thermophilic κ-Carrageenan Sulfatase.
J Agric Food Chem. 2025 Jan 22;73(3):2044-2055. doi: 10.1021/acs.jafc.4c09751. Epub 2025 Jan 11.
5
Hindguts of harbor phylogenetically and genomically distinct capable of degrading algal polysaccharides and diazotrophy.
mSystems. 2025 Jan 21;10(1):e0100724. doi: 10.1128/msystems.01007-24. Epub 2024 Dec 23.
7
and are equipped to degrade a cascade of polysaccharides along the hindgut of the herbivorous fish .
ISME Commun. 2024 Aug 1;4(1):ycae102. doi: 10.1093/ismeco/ycae102. eCollection 2024 Jan.
8
Metaproteomics reveals parallel utilization of colonic mucin glycans and dietary fibers by the human gut microbiota.
iScience. 2024 May 23;27(6):110093. doi: 10.1016/j.isci.2024.110093. eCollection 2024 Jun 21.
9
ι-Carrageenan catabolism is initiated by key sulfatases in the marine bacterium LL1.
Appl Environ Microbiol. 2024 Jul 24;90(7):e0025524. doi: 10.1128/aem.00255-24. Epub 2024 Jun 14.
10
Direct Degradation of Fresh and Dried Macroalgae by B2Z047.
Mar Drugs. 2024 Apr 28;22(5):203. doi: 10.3390/md22050203.

本文引用的文献

1
The genome of the seagrass Zostera marina reveals angiosperm adaptation to the sea.
Nature. 2016 Feb 18;530(7590):331-5. doi: 10.1038/nature16548. Epub 2016 Jan 27.
2
Enzyme-Assisted Preparation of Furcellaran-Like κ-/β-Carrageenan.
Mar Biotechnol (NY). 2016 Feb;18(1):133-43. doi: 10.1007/s10126-015-9675-3. Epub 2015 Nov 19.
3
Twenty years of the MEROPS database of proteolytic enzymes, their substrates and inhibitors.
Nucleic Acids Res. 2016 Jan 4;44(D1):D343-50. doi: 10.1093/nar/gkv1118. Epub 2015 Nov 2.
4
Using RAxML to Infer Phylogenies.
Curr Protoc Bioinformatics. 2015 Sep 3;51:6.14.1-6.14.14. doi: 10.1002/0471250953.bi0614s51.
6
The InterPro protein families database: the classification resource after 15 years.
Nucleic Acids Res. 2015 Jan;43(Database issue):D213-21. doi: 10.1093/nar/gku1243. Epub 2014 Nov 26.
7
2-Carboxyquinoxalines kill mycobacterium tuberculosis through noncovalent inhibition of DprE1.
ACS Chem Biol. 2015 Mar 20;10(3):705-14. doi: 10.1021/cb5007163. Epub 2014 Dec 9.
8
Structure of sulfamidase provides insight into the molecular pathology of mucopolysaccharidosis IIIA.
Acta Crystallogr D Biol Crystallogr. 2014 May;70(Pt 5):1321-35. doi: 10.1107/S1399004714002739. Epub 2014 Apr 30.
9
The carbohydrate-active enzymes database (CAZy) in 2013.
Nucleic Acids Res. 2014 Jan;42(Database issue):D490-5. doi: 10.1093/nar/gkt1178. Epub 2013 Nov 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验