Fouty B, Komalavilas P, Muramatsu M, Cohen A, McMurtry I F, Lincoln T M, Rodman D M
Division of Pulmonary Sciences, University of Colorado Health Sciences Center, Denver 80262-0001, USA.
Am J Physiol. 1998 Feb;274(2):H672-8. doi: 10.1152/ajpheart.1998.274.2.H672.
Nitric oxide (NO) is important in modulating increased pulmonary vascular tone. Whereas in other systems it is believed that the action of NO is mediated through guanosine 3',5'-cyclic monophosphate (cGMP) and protein kinase G (PKG), the validity of this pathway in the pulmonary circulation has not been established. Using isolated salt-perfused normotensive and hypertensive rat lungs, we studied the effects of the soluble guanylyl cyclase inhibitor, 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ), and the PKG inhibitors, KT5823, Rp-8-pCPT-cGMPS, and (N-[2-(methylamino)ethyl]-5-isoquinolinesulfonamide) (H-8), on pulmonary vascular resistance. In isolated normotensive lungs, ODQ-mediated inhibition of soluble guanylyl cyclase augmented hypoxic pulmonary vasoconstriction, whereas the PKG inhibitors had no effect. Despite the marked differences in the physiological effect, ODQ and Rp-8-pCPT-cGMPS inhibited PKG activity to a similar degree as determined by a back-phosphorylation assay showing decreased PKG-mediated phosphorylation of serine 1755 on the D-myo-inositol 1,4,5-trisphosphate receptor. In hypertensive lungs, inhibition of soluble guanylyl cyclase by ODQ increased perfusion pressure by 101 +/- 20% (P < 0.05), an increase similar to that seen with inhibition of NO synthase (NOS), confirming an essential role for cGMP. In contrast, KT5823, Rp-8-pCPT-cGMPS, and H-8 (used in doses 5- to 100-fold in excess of their reported inhibitory concentrations for PKG) caused only a small increase in baseline perfusion pressure (14 +/- 2%, P = not significant from vehicle control). Effectiveness of PKG inhibition in the hypertensive lungs was also confirmed with the back-phosphorylation assay. These studies suggest that whereas NO-mediated modulation of vascular tone in the normotensive and hypertensive pulmonary circulation is dependent on cGMP formation, activation of PKG may not be essential.
一氧化氮(NO)在调节肺血管张力增加方面具有重要作用。在其他系统中,人们认为NO的作用是通过鸟苷3',5'-环磷酸(cGMP)和蛋白激酶G(PKG)介导的,但该途径在肺循环中的有效性尚未得到证实。我们使用分离的盐灌注正常血压和高血压大鼠肺,研究了可溶性鸟苷酸环化酶抑制剂1H-[1,2,4]恶二唑并[4,3-a]喹喔啉-1-酮(ODQ)以及PKG抑制剂KT5823、Rp-8-pCPT-cGMPS和(N-[2-(甲氨基)乙基]-5-异喹啉磺酰胺)(H-8)对肺血管阻力的影响。在分离的正常血压肺中,ODQ介导的可溶性鸟苷酸环化酶抑制增强了低氧性肺血管收缩,而PKG抑制剂则无作用。尽管生理效应存在显著差异,但通过反向磷酸化测定显示ODQ和Rp-8-pCPT-cGMPS对PKG活性的抑制程度相似,该测定表明PKG介导的D-肌醇1,4,5-三磷酸受体上丝氨酸1755的磷酸化减少。在高血压肺中,ODQ对可溶性鸟苷酸环化酶的抑制使灌注压升高了101±20%(P<0.05),这一升高与抑制一氧化氮合酶(NOS)时观察到的升高相似,证实了cGMP的重要作用。相比之下,KT5823、Rp-8-pCPT-cGMPS和H-8(使用剂量比其报道的对PKG的抑制浓度高5至100倍)仅使基线灌注压略有升高(14±2%,与溶剂对照组相比P无显著性差异)。通过反向磷酸化测定也证实了PKG抑制在高血压肺中的有效性。这些研究表明,虽然在正常血压和高血压肺循环中NO介导的血管张力调节依赖于cGMP的形成,但PKG的激活可能并非必不可少。