Suppr超能文献

黄原胶与刺槐豆胶的协同凝胶化:流变学研究

Synergistic gelation of xanthan gum with locust bean gum: a rheological investigation.

作者信息

Copetti G, Grassi M, Lapasin R, Pricl S

机构信息

Department of Chemical, Environmental and Raw Materials Engineering--DICAMP, University of Trieste, Italy.

出版信息

Glycoconj J. 1997 Dec;14(8):951-61. doi: 10.1023/a:1018523029030.

Abstract

Many industrial products often include in their formulation more than one polysaccharide to achieve the desired properties during and after processing. Many such mixed systems behave as would be expected from the known properties of the individual polymers. In others, however, their properties are superior to those of either component alone, or may be qualitatively different. In many polysaccharide systems, the combination of a gelling polymer with a nongelling one gives rise to strong synergistic effects, as a consequence of interaction among different chain polymers and formation of mixed junction zones. Probably, the most exploited mixed gels, especially by the food industry, are those involving the microbial polysaccharide xanthan gum (XG) and the plant galactomannans, like locust bean gum (LBG). Concentrated aqueous systems of LBG and XG display quite different rheological properties: the former show the behaviour typical of hyperentangled macromolecular solutions, whereas the flow and viscoelastic properties of XG systems correspond to those of tenuous, weak-gel networks. Interestingly, when mixed together these macromolecules interact to form a firm, thermoreversible gel with synergistic effects. In the present paper we report the results of a thorough investigation of both polymer concentration and temperature effects on the rheological properties of mixed LBG-XG systems in 20 mM KCl under continuous and oscillatory flow conditions. Under continuous shear at 25 degrees C, pure LBG shows the flow properties of a macromolecular solution, with a shear-thinning behaviour and a Newtonian region at low shear rates, whereas the rheological behaviour of XG and all LX mixed systems is that typical of weak-gels. Furthermore, in the mixed systems the viscosity values do not increase monotonically with increasing xanthan concentration, but the synergistic effect has a maximum in accordance with the XG:LBG ratio 1:1. As the temperature is increased from 25 degrees C to 85 degrees C, whilst the LBG system do not show any qualitative change but there is only a parallel, downward shift of viscosity values, in the case of xanthan there is a dramatic change in the corresponding curve profiles, due to the thermally induced helix-coil conformational transition. The differences in the rheological behaviour of the systems examined can be better shown through dynamic tests at 25 degrees C. The strain sweeps performed at constant frequency of oscillation reveal that the mixed systems show higher sensitivity to strain amplitude, and lower strain values must be attained to ensure linear viscoelastic properties. The mechanical spectra clearly show the influence of composition on the viscoelastic properties of these biopolymer systems. All LX systems show the mechanical spectra typical of polysaccharide gels: G' is always much greater than G" and is nearly independent of the applied frequency over a wide frequency range. In addition, the marked gap between the elastic responses of the pure LBG and the LX 1:3 systems demonstrates the strong effect of the initial addition of xanthan to the pure LBG, especially in the low frequency range, whereas the highest synergistic effect is attained for the LX 1:1 system. A comprehensive description of the frequency dependence of both moduli can be suitably obtained through the four-parameter Friedrich model, which belongs to the class of fractional derivative approaches viscoelasticity. The same thermal effect is observed for the XG and all LX mixed systems considered, indicating a progressive change from the behaviour of a typical gel to that of a quasi-solution state, when temperature is increased from 25 degrees C to 85 degrees C. Among all mixed systems, the LX 1:1 has the highest values of the moduli at any temperature considered, and is characterized by the highest gel-sol transition temperature. (ABSTRACT TRUNCATED)

摘要

许多工业产品在其配方中常常包含不止一种多糖,以便在加工过程中和加工后获得所需的性能。许多这样的混合体系表现出的特性与单个聚合物已知特性所预期的一致。然而,在其他一些体系中,它们的性能优于单独的任何一种组分,或者可能在性质上有所不同。在许多多糖体系中,一种胶凝聚合物与一种非胶凝聚合物的组合会产生强烈的协同效应,这是不同链聚合物之间相互作用以及形成混合连接区的结果。也许,应用最广泛的混合凝胶,尤其是食品工业中使用的,是那些涉及微生物多糖黄原胶(XG)和植物半乳甘露聚糖(如刺槐豆胶(LBG))的凝胶。LBG 和 XG 的浓水溶液体系表现出截然不同的流变学特性:前者表现出超缠结大分子溶液的典型行为,而 XG 体系的流动和粘弹性特性则与稀的弱凝胶网络相对应。有趣的是,当这些大分子混合在一起时,它们相互作用形成一种具有协同效应的坚固的热可逆凝胶。在本文中,我们报告了在连续和振荡流动条件下,对 20 mM KCl 中混合 LBG-XG 体系的聚合物浓度和温度对其流变学特性影响的深入研究结果。在 25℃下连续剪切时,纯 LBG 表现出大分子溶液的流动特性,具有剪切变稀行为以及在低剪切速率下的牛顿区,而 XG 和所有 LX 混合体系的流变行为则是弱凝胶的典型行为。此外,在混合体系中,粘度值并不随黄原胶浓度的增加而单调增加,而是协同效应在 XG:LBG 比例为 1:1 时达到最大值。当温度从 25℃升高到 85℃时,LBG 体系没有表现出任何定性变化,只是粘度值平行向下移动,而对于黄原胶,由于热诱导的螺旋-线圈构象转变,相应的曲线轮廓发生了显著变化。通过在 25℃下进行动态测试,可以更好地展示所研究体系流变行为的差异。在恒定振荡频率下进行的应变扫描表明,混合体系对应变幅度表现出更高的敏感性,并且必须达到更低的应变值才能确保线性粘弹性特性。力学谱清楚地显示了组成对这些生物聚合物体系粘弹性特性的影响。所有 LX 体系都表现出多糖凝胶的典型力学谱:G'总是远大于 G",并且在很宽的频率范围内几乎与施加的频率无关。此外,纯 LBG 和 LX 1:3 体系弹性响应之间的明显差距表明,向纯 LBG 中最初添加黄原胶具有很强的效果,尤其是在低频范围内,而 LX 1:1 体系达到了最高的协同效应。通过属于分数导数粘弹性方法类别的四参数弗里德里希模型,可以适当地获得两个模量频率依赖性的全面描述。对于所考虑的 XG 和所有 LX 混合体系,观察到相同的热效应,这表明当温度从 25℃升高到 85℃时,从典型凝胶的行为逐渐转变为准溶液状态的行为。在所有混合体系中,LX 1:1 在任何考虑的温度下都具有最高的模量值,并且其特征在于最高的凝胶-溶胶转变温度。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验