Suppr超能文献

脊椎动物用于蛋白质合成的tRNA中起始子-延伸子的区分

Initiator-elongator discrimination in vertebrate tRNAs for protein synthesis.

作者信息

Drabkin H J, Estrella M, Rajbhandary U L

机构信息

Department of Biology, Massachusetts Institute of Technology, Cambridge 02139, USA.

出版信息

Mol Cell Biol. 1998 Mar;18(3):1459-66. doi: 10.1128/MCB.18.3.1459.

Abstract

Initiator tRNAs are used exclusively for initiation of protein synthesis and not for the elongation step. We show, in vivo and in vitro, that the primary sequence feature that prevents the human initiator tRNA from acting in the elongation step is the nature of base pairs 50:64 and 51:63 in the TpsiC stem of the initiator tRNA. Various considerations suggest that this is due to sequence-dependent perturbation of the sugar phosphate backbone in the TpsiC stem of initiator tRNA, which most likely blocks binding of the elongation factor to the tRNA. Because the sequences of all vertebrate initiator tRNAs are identical, our findings with the human initiator tRNA are likely to be valid for all vertebrate systems. We have developed reporter systems that can be used to monitor, in mammalian cells, the activity in elongation of mutant human initiator tRNAs carrying anticodon sequence mutations from CAU to CCU (the C35 mutant) or to CUA (the U35A36 mutant). Combination of the anticodon sequence mutation with mutations in base pairs 50:64 and 51:63 yielded tRNAs that act as elongators in mammalian cells. Further mutation of the A1:U72 base pair, which is conserved in virtually all eukaryotic initiator tRNAs, to G1:C72 in the C35 mutant background yielded tRNAs that were even more active in elongation. In addition, in a rabbit reticulocyte in vitro protein-synthesizing system, a tRNA carrying the TpsiC stem and the A1:U72-to-G1:C72 mutations was almost as active in elongation as the elongator methionine tRNA. The combination of mutant initiator tRNA with the CCU anticodon and the reporter system developed here provides the first example of missense suppression in mammalian cells.

摘要

起始tRNA仅用于蛋白质合成的起始阶段,而不用于延伸步骤。我们在体内和体外均表明,阻止人类起始tRNA参与延伸步骤的主要序列特征是起始tRNA的TpsiC茎中碱基对50:64和51:63的性质。各种因素表明,这是由于起始tRNA的TpsiC茎中糖磷酸骨架的序列依赖性扰动,这很可能阻止了延伸因子与tRNA的结合。由于所有脊椎动物起始tRNA的序列都是相同的,我们对人类起始tRNA的研究结果可能对所有脊椎动物系统都有效。我们开发了报告系统,可用于监测哺乳动物细胞中携带反密码子序列从CAU突变为CCU(C35突变体)或CUA(U35A36突变体)的突变人类起始tRNA在延伸过程中的活性。反密码子序列突变与碱基对50:64和51:63中的突变相结合,产生了在哺乳动物细胞中起延伸作用的tRNA。在C35突变体背景下,几乎所有真核起始tRNA中保守的A1:U72碱基对进一步突变为G1:C72,产生了在延伸过程中活性更高的tRNA。此外,在兔网织红细胞体外蛋白质合成系统中,携带TpsiC茎以及A1:U72到G1:C72突变的tRNA在延伸过程中的活性几乎与延伸型甲硫氨酸tRNA一样高。具有CCU反密码子的突变起始tRNA与本文开发的报告系统的结合提供了哺乳动物细胞中错义抑制的首个实例。

相似文献

1
Initiator-elongator discrimination in vertebrate tRNAs for protein synthesis.
Mol Cell Biol. 1998 Mar;18(3):1459-66. doi: 10.1128/MCB.18.3.1459.
4
The yeast initiator tRNAMet can act as an elongator tRNA(Met) in vivo.
J Mol Biol. 1993 Sep 5;233(1):43-58. doi: 10.1006/jmbi.1993.1483.
8
Common location of determinants in initiator transfer RNAs for initiator-elongator discrimination in bacteria and in eukaryotes.
J Biol Chem. 2003 May 16;278(20):17672-9. doi: 10.1074/jbc.M212890200. Epub 2003 Mar 13.
9
Rit1, a tRNA backbone-modifying enzyme that mediates initiator and elongator tRNA discrimination.
Cell. 1994 Nov 4;79(3):535-46. doi: 10.1016/0092-8674(94)90262-3.
10
Yeast initiator tRNA identity elements cooperate to influence multiple steps of translation initiation.
RNA. 2006 May;12(5):751-64. doi: 10.1261/rna.2263906. Epub 2006 Mar 24.

引用本文的文献

1
Specific tRNAs promote mRNA decay by recruiting the CCR4-NOT complex to translating ribosomes.
Science. 2024 Nov 22;386(6724):eadq8587. doi: 10.1126/science.adq8587.
2
tRNAscan-SE 2.0: improved detection and functional classification of transfer RNA genes.
Nucleic Acids Res. 2021 Sep 20;49(16):9077-9096. doi: 10.1093/nar/gkab688.
3
SOX4-mediated repression of specific tRNAs inhibits proliferation of human glioblastoma cells.
Proc Natl Acad Sci U S A. 2020 Mar 17;117(11):5782-5790. doi: 10.1073/pnas.1920200117. Epub 2020 Mar 2.
5
GCN2- and eIF2α-phosphorylation-independent, but ATF4-dependent, induction of CARE-containing genes in methionine-deficient cells.
Amino Acids. 2016 Dec;48(12):2831-2842. doi: 10.1007/s00726-016-2318-9. Epub 2016 Sep 10.
7
Mutant methionyl-tRNA synthetase from bacteria enables site-selective N-terminal labeling of proteins expressed in mammalian cells.
Proc Natl Acad Sci U S A. 2013 Mar 26;110(13):4992-7. doi: 10.1073/pnas.1216375110. Epub 2013 Mar 11.
8
Evolution of macromolecular import pathways in mitochondria, hydrogenosomes and mitosomes.
Philos Trans R Soc Lond B Biol Sci. 2010 Mar 12;365(1541):799-817. doi: 10.1098/rstb.2009.0167.
9
Eukaryotic initiator tRNA: finely tuned and ready for action.
FEBS Lett. 2010 Jan 21;584(2):396-404. doi: 10.1016/j.febslet.2009.11.047.

本文引用的文献

1
Aminoacyl RNA domain of turnip yellow mosaic virus Val-RNA interacting with elongation factor Tu.
Nucleic Acids Res. 1984 Oct 11;12(19):7467-78. doi: 10.1093/nar/12.19.7467.
2
N-FORMYL-METHIONYL-S-RNA.
J Mol Biol. 1964 Jun;8:835-40. doi: 10.1016/s0022-2836(64)80164-9.
5
The ternary complex of aminoacylated tRNA and EF-Tu-GTP. Recognition of a bond and a fold.
Biochimie. 1996;78(11-12):921-33. doi: 10.1016/s0300-9084(97)86714-4.
9
Compilation of tRNA sequences and sequences of tRNA genes.
Nucleic Acids Res. 1996 Jan 1;24(1):68-72. doi: 10.1093/nar/24.1.68.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验