Imagawa M, Graf W, Sato H, Suwa H, Isu N, Izumi R, Uchino Y
Department of Physiology, Tokyo Medical College, Japan.
Neurosci Lett. 1998 Jan 16;240(3):127-30. doi: 10.1016/s0304-3940(97)00944-0.
The morphology of single saccular afferents was studied by the intracellular horseradish peroxidase (HRP) method. Four neurons were sufficiently stained to allow reconstruction of their axonal arborizations. The main axon of these neurons bifurcated into an ascending and a descending branch at the level of the lateral nucleus. The ascending branches of two axons gave off collaterals with boutons in the caudal part of the superior nucleus, while the other two ascending branches lacked such terminations. By contrast, characteristics of the descending axonal arborization patterns of all the four neurons were substantially the same. The descending branches coursed caudally through the lateral part of the descending nucleus, and gave off up to 14 collaterals with boutons that extended throughout this nucleus. These collaterals also reached the ventral part of the lateral nucleus, the lateral border of the medial nucleus, and group f. A few axon collaterals ramified even outside the border of the vestibular nuclei into the spinal trigeminal nucleus and the reticular formation surrounding it. Axon collaterals from the stem axon also terminated in the interstitial nucleus of the vestibular nerve. There was a noticeable absence of any projection to the y group.