Ujj L, Jäger F, Atkinson G H
Department of Chemistry and Optical Science Center, University of Arizona, Tucson 85721-0041, USA.
Biophys J. 1998 Mar;74(3):1492-501. doi: 10.1016/S0006-3495(98)77861-0.
The vibrational spectrum (650-1750 cm(-1)) of the lumi-rhodopsin (lumi) intermediate formed in the microsecond time regime of the room-temperature rhodopsin (RhRT) photoreaction is measured for the first time using picosecond time-resolved coherent anti-Stokes Raman spectroscopy (PTR/CARS). The vibrational spectrum of lumi is recorded 2.5 micros after the 3-ps, 500-nm excitation of RhRT. Complementary to Fourier transform infrared spectra recorded at Rh sample temperatures low enough to freeze lumi, these PTR/CARS results provide the first detailed view of the vibrational degrees of freedom of room-temperature lumi (lumiRT) through the identification of 21 bands. The exceptionally low intensity (compared to those observed in bathoRT) of the hydrogen out-of-plane (HOOP) bands, the moderate intensity and absolute positions of C-C stretching bands, and the presence of high-intensity C==C stretching bands suggest that lumiRT contains an almost planar (nontwisting), all-trans retinal geometry. Independently, the 944-cm(-1) position of the most intense HOOP band implies that a resonance coupling exists between the out-of-plane retinal vibrations and at least one group among the amino acids comprising the retinal binding pocket. The formation of lumiRT, monitored via PTR/CARS spectra recorded on the nanosecond time scale, can be associated with the decay of the blue-shifted intermediate (BSI(RT)) formed in equilibrium with the bathoRT intermediate. PTR/CARS spectra measured at a 210-ns delay contain distinct vibrational features attributable to BSI(RT), which suggest that the all-trans retinal in both BSI(RT) and lumiRT is strongly coupled to part of the retinal binding pocket. With regard to the energy storage/transduction mechanism in RhRT, these results support the hypothesis that during the formation of lumiRT, the majority of the photon energy absorbed by RhRT transfers to the apoprotein opsin.
首次使用皮秒时间分辨相干反斯托克斯拉曼光谱(PTR/CARS)测量了在室温视紫红质(RhRT)光反应微秒时间范围内形成的发光视紫红质(lumi)中间体的振动光谱(650 - 1750 cm⁻¹)。在对RhRT进行3皮秒、500纳米激发后2.5微秒记录lumi的振动光谱。与在足够低的Rh样品温度下记录的傅里叶变换红外光谱互补,这些PTR/CARS结果通过识别21条谱带首次详细展示了室温lumi(lumiRT)的振动自由度。氢面外(HOOP)谱带的强度极低(与在bathoRT中观察到的相比)、C - C伸缩谱带的强度适中及绝对位置,以及高强度C==C伸缩谱带的存在表明lumiRT包含几乎平面(非扭转)的全反式视黄醛几何结构。另外,最强HOOP谱带在944 cm⁻¹处的位置意味着面外视黄醛振动与构成视黄醛结合口袋的氨基酸中的至少一组之间存在共振耦合。通过在纳秒时间尺度上记录的PTR/CARS光谱监测lumiRT的形成,可与与bathoRT中间体处于平衡状态形成的蓝移中间体(BSI(RT))的衰减相关联。在210纳秒延迟时测量的PTR/CARS光谱包含可归因于BSI(RT)的独特振动特征,这表明BSI(RT)和lumiRT中的全反式视黄醛都与视黄醛结合口袋的一部分强烈耦合。关于RhRT中的能量存储/转导机制,这些结果支持这样的假设,即在lumiRT形成过程中,RhRT吸收的大部分光子能量转移到脱辅基蛋白视蛋白上。