Department of Chemistry, University of California, Berkeley, CA 94720.
Proc Natl Acad Sci U S A. 1984 Apr;81(7):2055-9. doi: 10.1073/pnas.81.7.2055.
Resonance Raman spectra of the BR(568), BR(548), K(625), and L(550) intermediates of the bacteriorhodopsin photocycle have been obtained in (1)H(2)O and (2)H(2)O by using native purple membrane as well as purple membrane regenerated with 14,15-(13)C(2) and 12,14-(2)H(2) isotopic derivatives of retinal. These derivatives were selected to determine the contribution of the C(14)-C(15) stretch to the normal modes in the 1100- to 1400-cm(-1) fingerprint region and to characterize the coupling of the C(14)-C(15) stretch with the NH rock. Normal mode calculations demonstrate that when the retinal Schiff base is in the C[unk]N cis configuration the C(14)-C(15) stretch and the NH rock are strongly coupled, resulting in a large ( approximately 50-cm(-1)) upshift of the C(14)-C(15) stretch upon deuteration of the Schiff base nitrogen. In the C[unk]N trans geometry these vibrations are weakly coupled and only a slight (<5-cm(-1)) upshift of the C(14)-C(15) stretch is predicted upon N-deuteration. In BR(568), the insensitivity of the 1201-cm(-1) C(14)-C(15) stretch to N-deuteration demonstrates that its retinal C[unk]N configuration is trans. The C(14)-C(15) stretch in BR(548), however, shifts up from 1167 cm(-1) in (1)H(2)O to 1208 cm(-1) in (2)H(2)O, indicating that BR(548) contains a C[unk]N cis chromophore. Thus, the conversion of BR(568) to BR(548) (dark adaptation) involves isomerization about the C[unk]N bond in addition to isomerization about the C(13)[unk]C(14) bond. The insensitivity of the native, [14,15-(13)C(2)]-, and [12,14-(2)H(2)]K(625) and L(550) spectra to N-deuteration argues that these intermediates have a C[unk]N trans configuration. Thus, the primary photochemical step in bacteriorhodopsin (BR(568) --> K(625)) involves isomerization about the C(13)[unk]C(14) bond alone. The significance of these results for the mechanism of proton-pumping by bacteriorhodopsin is discussed.
菌紫质光循环的 BR(568)、BR(548)、K(625) 和 L(550) 中间态的共振拉曼光谱已经在(1)H(2)O 和(2)H(2)O 中通过使用天然紫膜以及用 14,15-(13)C(2)和 12,14-(2)H(2)同位素衍生的视黄醛再生的紫膜获得。这些衍生物被选择来确定 C(14)-C(15) 伸缩振动对 1100-1400cm(-1) 指纹区中本征模式的贡献,并表征 C(14)-C(15) 伸缩振动与 NH 摇滚的耦合。本征模式计算表明,当视黄醛席夫碱处于 C[unk]N 顺式构型时,C(14)-C(15) 伸缩振动和 NH 摇滚强烈耦合,导致席夫碱氮的氘取代后 C(14)-C(15) 伸缩振动的大幅(约 50cm(-1))上移。在 C[unk]N 反式几何结构中,这些振动弱耦合,仅预测 C(14)-C(15) 伸缩振动的轻微(<5cm(-1))上移。在 BR(568)中,1201cm(-1) C(14)-C(15) 伸缩振动对 N-氘化的不敏感性表明其视黄醛 C[unk]N 构型为反式。然而,BR(548)中的 C(14)-C(15) 伸缩振动从(1)H(2)O 中的 1167cm(-1) 移动到(2)H(2)O 中的 1208cm(-1),表明 BR(548) 含有 C[unk]N 顺式发色团。因此,BR(568) 向 BR(548)的转化(暗适应)除了 C(13)[unk]C(14) 键的异构化外,还涉及 C[unk]N 键的异构化。天然的、[14,15-(13)C(2)]-和[12,14-(2)H(2)]K(625)和 L(550) 光谱对 N-氘化的不敏感性表明这些中间体具有 C[unk]N 反式构型。因此,菌紫质(BR(568) --> K(625)) 的主要光化学步骤仅涉及 C(13)[unk]C(14) 键的异构化。这些结果对菌紫质质子泵浦机制的意义进行了讨论。