Rudolph D J, Coggins J M, Moon H
UCLA School of Dentistry, Section of Orthodontics 90024, USA.
Int J Med Inform. 1997 Dec;47(3):183-91. doi: 10.1016/s1386-5056(97)00066-x.
The diagnostic process of orthodontics requires the analysis of a cephalometric radiograph. Image landmarks on this two-dimensional lateral projection image of the patient's head are manually identified and spatial relationships are evaluated. This method is very time consuming. A reliable method for automatic computer landmark identification does not exist. Spatial Spectroscopy is a proposed method of automatic landmark identification on cephalometric radiographs, that decomposes an image by convolving it with a set of filters followed by a statistical decision process. The purpose of this paper is to discuss and test appropriate filter sets for the application of Spatial Spectroscopy for automatic identification of cephalometric radiographic landmarks. This study evaluated two different filter sets with 15 landmarks on fourteen images. Spatial Spectroscopy was able to consistently locate landmarks on all 14 cephalometric radiographs tested. The mean landmark identification error of 0.841 +/- 1.253 pixels for a Multiscale Derivative filter set and 0.912 +/- 1.364 pixels for an Offset Gaussian filter set was not significantly different. Furthermore, there were no significant differences between identification of individual landmarks for the Multiscale Derivative and the Offset Gaussian filter set (P > 0.05). These results suggest that Spatial Spectroscopy may be useful in landmark identification tasks.
正畸诊断过程需要对头颅侧位片进行分析。在患者头部的这张二维侧位投影图像上手动识别图像标志点,并评估空间关系。这种方法非常耗时。目前还不存在一种可靠的自动计算机标志点识别方法。空间光谱学是一种在头颅侧位片上自动识别标志点的方法,它通过将图像与一组滤波器进行卷积,然后经过统计决策过程来分解图像。本文的目的是讨论和测试适用于空间光谱学以自动识别头颅侧位片标志点的滤波器组。本研究在14张图像上使用两种不同的滤波器组对15个标志点进行了评估。空间光谱学能够在所有测试的14张头颅侧位片上持续定位标志点。多尺度导数滤波器组的平均标志点识别误差为0.841±1.253像素,偏移高斯滤波器组的平均标志点识别误差为0.912±1.364像素,两者无显著差异。此外,多尺度导数滤波器组和偏移高斯滤波器组在单个标志点的识别上也没有显著差异(P>0.05)。这些结果表明,空间光谱学在标志点识别任务中可能是有用的。