Llinás M, Marqusee S
Department of Molecular and Cell Biology, University of California at Berkeley, 94720, USA.
Protein Sci. 1998 Jan;7(1):96-104. doi: 10.1002/pro.5560070110.
The folding of large, multidomain proteins involves the hierarchical assembly of individual domains. It remains unclear whether the stability and folding of small, single-domain proteins occurs through a comparable assembly of small, autonomous folding units. We have investigated the relationship between two subdomains of the protein T4 lysozyme. Thermodynamically, T4 lysozyme behaves as a cooperative unit and the unfolding transition fits a two-state model. The structure of the protein, however, resembles a dumbbell with two potential subdomains: an N-terminal subdomain (residues 13-75), and a C-terminal subdomain (residues 76-164 and 1-12). To investigate the effect of uncoupling these two subdomains within the context of the native protein, we created two circular permutations, both at the subdomain interface (residues 13 and 75). Both variants adopt an active wild-type T4 lysozyme fold. The protein starting with residue 13 is 3 kcal/mol less stable than wild type, whereas the protein beginning at residue 75 is 9 kcal/mol less stable, suggesting that the placement of the termini has a major effect on protein stability while minimally affecting the fold. When isolated as protein fragments, the C-terminal subdomain folds into a marginally stable helical structure, whereas the N-terminal subdomain is predominantly unfolded. ANS fluorescence studies indicate that, at low pH, the C-terminal subdomain adopts a loosely packed acid state. An acid state intermediate is also seen for all of the full-length variants. We propose that this acid state is comprised of an unfolded N-terminal subdomain and a loosely folded C-terminal subdomain.
大型多结构域蛋白质的折叠涉及各个结构域的分层组装。目前尚不清楚小型单结构域蛋白质的稳定性和折叠是否通过类似的小型自主折叠单元的组装来实现。我们研究了蛋白质T4溶菌酶的两个亚结构域之间的关系。从热力学角度来看,T4溶菌酶表现为一个协同单元,其解折叠转变符合两态模型。然而,该蛋白质的结构类似于一个带有两个潜在亚结构域的哑铃:一个N端亚结构域(第13 - 75位氨基酸残基)和一个C端亚结构域(第76 - 164位氨基酸残基以及第1 - 12位氨基酸残基)。为了研究在天然蛋白质背景下解开这两个亚结构域的影响,我们在亚结构域界面(第13和75位氨基酸残基处)创建了两种环形排列。两种变体都采用了活性野生型T4溶菌酶的折叠方式。以第13位氨基酸残基开始的蛋白质比野生型稳定性低3千卡/摩尔,而从第75位氨基酸残基开始的蛋白质稳定性低9千卡/摩尔,这表明末端的位置对蛋白质稳定性有重大影响,同时对折叠的影响最小。当作为蛋白质片段分离时,C端亚结构域折叠成一个稳定性稍差的螺旋结构,而N端亚结构域主要处于未折叠状态。ANS荧光研究表明,在低pH值下,C端亚结构域呈现出一种松散堆积的酸性状态。在所有全长变体中也观察到了酸性状态中间体。我们认为这种酸性状态由未折叠的N端亚结构域和松散折叠的C端亚结构域组成。