Hamadani Kambiz M, Howe Jesse, Jensen Madeleine K, Wu Peng, Cate Jamie H D, Marqusee Susan
From the California Institute for Quantitative Biosciences and
the Department of Chemistry and Biochemistry, California State University, San Marcos, California 92096, and.
J Biol Chem. 2017 Sep 22;292(38):15636-15648. doi: 10.1074/jbc.M117.791723. Epub 2017 Jul 28.
Biomolecular systems exhibit many dynamic and biologically relevant properties, such as conformational fluctuations, multistep catalysis, transient interactions, folding, and allosteric structural transitions. These properties are challenging to detect and engineer using standard ensemble-based techniques. To address this drawback, single-molecule methods offer a way to access conformational distributions, transient states, and asynchronous dynamics inaccessible to these standard techniques. Fluorescence-based single-molecule approaches are parallelizable and compatible with multiplexed detection; to date, however, they have remained limited to serial screens of small protein libraries. This stems from the current absence of methods for generating either individual dual-labeled protein samples at high throughputs or protein libraries compatible with multiplexed screening platforms. Here, we demonstrate that by combining purified and reconstituted translation, quantitative unnatural amino acid incorporation via AUG codon reassignment, and copper-catalyzed azide-alkyne cycloaddition, we can overcome these challenges for target proteins that are, or can be, methionine-depleted. We present an parallelizable approach that does not require laborious target-specific purification to generate dual-labeled proteins and ribosome-nascent chain libraries suitable for single-molecule FRET-based conformational phenotyping. We demonstrate the power of this approach by tracking the effects of mutations, C-terminal extensions, and ribosomal tethering on the structure and stability of three protein model systems: barnase, spectrin, and T4 lysozyme. Importantly, dual-labeled ribosome-nascent chain libraries enable single-molecule co-localization of genotypes with phenotypes, are well suited for multiplexed single-molecule screening of protein libraries, and should enable the directed evolution of proteins with designer single-molecule conformational phenotypes of interest.
生物分子系统展现出许多动态且与生物学相关的特性,例如构象波动、多步催化、瞬时相互作用、折叠以及变构结构转变。利用基于系综的标准技术来检测和设计这些特性具有挑战性。为解决这一缺陷,单分子方法提供了一种途径,可获取这些标准技术无法触及的构象分布、瞬时状态和异步动力学。基于荧光的单分子方法具有可并行化且与多重检测兼容的特点;然而,迄今为止,它们仍局限于对小型蛋白质文库进行串行筛选。这是由于目前缺乏高通量生成单个双标记蛋白质样品或与多重筛选平台兼容的蛋白质文库的方法。在此,我们证明,通过将纯化和重构翻译、经由AUG密码子重新分配的定量非天然氨基酸掺入以及铜催化的叠氮化物-炔烃环加成相结合,我们能够克服针对已去除或可去除甲硫氨酸的靶蛋白所面临的这些挑战。我们提出了一种可并行化的方法,该方法无需费力的靶标特异性纯化即可生成适用于基于单分子荧光共振能量转移(FRET)的构象表型分析的双标记蛋白质和核糖体-新生链文库。我们通过追踪突变、C末端延伸以及核糖体拴系对三种蛋白质模型系统(巴纳酶、血影蛋白和T4溶菌酶)的结构和稳定性的影响,展示了这种方法的强大功能。重要的是,双标记核糖体-新生链文库能够实现基因型与表型的单分子共定位,非常适合对蛋白质文库进行多重单分子筛选,并且应该能够实现具有感兴趣的设计单分子构象表型的蛋白质的定向进化。