Suppr超能文献

Reduced lysyl oxidase messenger RNA levels in experimental and human prostate cancer.

作者信息

Ren C, Yang G, Timme T L, Wheeler T M, Thompson T C

机构信息

Scott Department of Urology, Baylor College of Medicine, Houston, Texas 77030, USA.

出版信息

Cancer Res. 1998 Mar 15;58(6):1285-90.

PMID:9515817
Abstract

To identify genes associated with prostate cancer progression, we developed a strategy involving the use of differential display PCR and a panel of genetically matched primary tumor- and metastasis-derived mouse prostate cancer cell lines. We analyzed sequences that were differentially stimulated by transforming growth factor-beta1 in primary tumor-versus metastasis-derived cell lines, based on our previous studies indicating that acquisition of differential responses to this growth factor could result in phenotypic traits that facilitate tumor metastasis from specific cell clones within the primary tumor. Using this system, we isolated and sequenced a cDNA fragment that encoded mouse lysyl oxidase (LO) and was induced by transforming growth factor-beta1 in primary tumor but not in metastasis-derived cells. Northern blotting analysis revealed increased LO expression in a panel of primary tumor cell lines but significantly reduced or nondetectable expression in their matched metastatic counterparts. Further in situ hybridization analysis revealed LO expression in normal mouse prostate epithelium but, in most cases, progressive loss of expression in primary prostate cancer and associated metastatic lesions. Importantly, in situ hybridization studies of normal human prostate and prostate malignancies revealed a similar loss of expression during progression to metastasis. The progressive loss of LO expression during prostate cancer progression provides information that may increase our understanding of the mechanisms that underlie this disease. In addition, LO may provide a useful molecular marker and/or establish a novel therapeutic target for prostate cancer.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验