Suppr超能文献

通过生理和遗传分析确定大肠杆菌中moeA(钼酸盐代谢)基因产物的生化作用。

Physiological and genetic analyses leading to identification of a biochemical role for the moeA (molybdate metabolism) gene product in Escherichia coli.

作者信息

Hasona A, Ray R M, Shanmugam K T

机构信息

Department of Microbiology and Cell Science, University of Florida, Gainesville 32611, USA.

出版信息

J Bacteriol. 1998 Mar;180(6):1466-72. doi: 10.1128/JB.180.6.1466-1472.1998.

Abstract

A unique class of chlorate-resistant mutants of Escherichia coli which produced formate hydrogenlyase and nitrate reductase activities only when grown in medium with limiting amounts of sulfur compounds was isolated. These mutants failed to produce the two molybdoenzyme activities when cultured in rich medium or glucose-minimal medium. The mutations in these mutants were localized in the moeA gene. Mutant strains with polar mutations in moeA which are also moeB did not produce active molybdoenzymes in any of the media tested. moeA mutants with a second mutation in either cysDNCJI or cysH gene lost the ability to produce active molybdoenzyme even when grown in medium limiting in sulfur compounds. The CysDNCJIH proteins along with CysG catalyze the conversion of sulfate to sulfide. Addition of sulfide to the growth medium of moeA cys double mutants suppressed the MoeA- phenotype. These results suggest that in the absence of MoeA protein, the sulfide produced by the sulfate activation/reduction pathway combines with molybdate in the production of activated molybdenum. Since hydrogen sulfide is known to interact with molybdate in the production of thiomolybdate, it is possible that the MoeA-catalyzed activated molybdenum is a form of thiomolybdenum species which is used in the synthesis of molybdenum cofactor from Mo-free molybdopterin.

摘要

分离出一类独特的大肠杆菌耐氯酸盐突变体,这类突变体仅在含有限量硫化合物的培养基中生长时才产生甲酸氢化酶和硝酸还原酶活性。当在丰富培养基或葡萄糖基本培养基中培养时,这些突变体无法产生这两种钼酶活性。这些突变体中的突变定位在moeA基因中。在moeA中具有极性突变且也是moeB的突变菌株在任何测试培养基中均不产生活性钼酶。在cysDNCJI或cysH基因中具有第二个突变的moeA突变体即使在含有限量硫化合物的培养基中生长也失去了产生活性钼酶的能力。CysDNCJIH蛋白与CysG一起催化硫酸盐向硫化物的转化。向moeA cys双突变体的生长培养基中添加硫化物可抑制MoeA-表型。这些结果表明,在没有MoeA蛋白的情况下,硫酸盐活化/还原途径产生的硫化物在活性钼的产生过程中与钼酸盐结合。由于已知硫化氢在硫代钼酸盐的产生过程中与钼酸盐相互作用,因此有可能MoeA催化的活性钼是硫代钼酸盐物种的一种形式,其用于从无钼蝶呤合成钼辅因子。

相似文献

引用本文的文献

1
Fusion/fission protein family identification in Archaea.古菌中融合/裂变蛋白家族的鉴定。
mSystems. 2024 Jun 18;9(6):e0094823. doi: 10.1128/msystems.00948-23. Epub 2024 May 3.
3
Function of Molybdenum Insertases.钼插入酶的功能。
Molecules. 2022 Aug 23;27(17):5372. doi: 10.3390/molecules27175372.
6
Biosynthesis and Insertion of the Molybdenum Cofactor.钼辅因子的生物合成与插入
EcoSal Plus. 2015;6(2). doi: 10.1128/ecosalplus.ESP-0006-2013.
7
One carbon metabolism in SAR11 pelagic marine bacteria.海洋浮游细菌 SAR11 中的一碳代谢。
PLoS One. 2011;6(8):e23973. doi: 10.1371/journal.pone.0023973. Epub 2011 Aug 23.

本文引用的文献

2
Molybdate transport and regulation in bacteria.细菌中的钼酸盐转运与调控
Arch Microbiol. 1997 Nov;168(5):345-54. doi: 10.1007/s002030050508.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验