Bertl A, Bihler H, Reid J D, Kettner C, Slayman C L
Botanisches Institut I, Universität Karlsruhe, Germany.
J Membr Biol. 1998 Mar 1;162(1):67-80. doi: 10.1007/s002329900343.
The major voltage-dependent ion channel in the plasma membrane of Saccharomyces cerevisiae, a conspicuous outwardly rectifying K+ channel, was first dubbed YPK1 and later renamed according to its registered gene names (DUK1, TOK1). It has proven novel in both structure and function. Whole-cell patch-clamp studies of the channel directly on yeast protoplasts now extend our earlier description obtained from isolated patches of yeast membrane (Bertl & Slayman, 1992; Bertl et al., 1993), and provide new data both on the contributions of channel properties to yeast physiology and on possible contributions of molecular structure of channel properties. Three recording tactics produce completely equivalent results and thereby allow great flexibility in the design of experiments: whole-cell voltage clamp with sustained voltage steps (approximately 2.5 sec), whole-cell voltage clamp with slow voltage ramps (5 sec, -40 to +100 mV), and time-averaging of single-channel currents. Activation of Duk1 channels under steady-state conditions is dependent upon ATP in the cytoplasmic solution, and the absence of ATP results in channel "rundown"--decreasing numbers of activable channels--over periods of 10 min to 1 hr from the start of patch recording. Several putative serine- and threonine-phosphorylation sites, as well as a variant ATP-binding fold, exist in the molecule as potential mediators of the ATP effects. The channel runs down similarly following cytoplasmic acidification, but is almost completely insensitive to extracellular pH changes (8.0 to 5.5 tested). This remarkable asymmetry may depend on the protein's strongly asymmetric distribution of histidine residues, with 10 out of 12 predicted to lie close to the membrane-cytoplasm interface. Further data confirm the well-recognized observation that changes of K+ concentration, intracellular or extracellular, can shift the gating voltage of Duk1p in the direction of EK. Among the other alkali-metal cations tested, extracellular Rb+ and Cs(+)--but not Na(+)--substitute almost completely for K+. Extracellular TEA+ inhibits whole-cell K+ currents through Duk1p with a KI of 2.8 mM, and does so probably by reducing the single-channel current.
酿酒酵母质膜中主要的电压依赖性离子通道是一种明显的外向整流钾通道,最初被命名为YPK1,后来根据其注册基因名称(DUK1、TOK1)重新命名。它在结构和功能上都很新颖。现在,对酵母原生质体上该通道进行的全细胞膜片钳研究扩展了我们早期从分离的酵母膜片获得的描述(Bertl和Slayman,1992年;Bertl等人,1993年),并提供了关于通道特性对酵母生理学的贡献以及通道特性分子结构可能的贡献的新数据。三种记录策略产生完全等效的结果,从而在实验设计上具有很大的灵活性:具有持续电压阶跃(约2.5秒)的全细胞膜电压钳、具有缓慢电压斜坡(5秒,-40至+100 mV)的全细胞膜电压钳以及单通道电流的时间平均。在稳态条件下,Duk1通道的激活依赖于细胞质溶液中的ATP,并且在从膜片记录开始的10分钟到1小时的时间段内,ATP的缺失会导致通道“衰减”——可激活通道数量减少。分子中存在几个假定的丝氨酸和苏氨酸磷酸化位点以及一个变体ATP结合结构域,作为ATP效应的潜在介质。在细胞质酸化后,通道也会类似地衰减,但几乎对细胞外pH变化(测试范围为8.0至5.5)完全不敏感。这种显著的不对称性可能取决于蛋白质中组氨酸残基的强烈不对称分布,预计12个中有10个位于靠近膜 - 细胞质界面处。进一步的数据证实了一个广为人知的观察结果,即细胞内或细胞外钾离子浓度的变化可以使Duk1p的门控电压向EK方向移动。在测试的其他碱金属阳离子中,细胞外的Rb +和Cs(+)——而不是Na(+)——几乎可以完全替代K +。细胞外TEA +以2.8 mM的KI抑制通过Duk1p的全细胞钾电流,并且可能是通过降低单通道电流来实现的。