Hassett R F, Romeo A M, Kosman D J
Department of Biochemistry, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York 14214, USA.
J Biol Chem. 1998 Mar 27;273(13):7628-36. doi: 10.1074/jbc.273.13.7628.
High affinity iron uptake in Saccharomyces cerevisiae requires a metal reductase, a multicopper ferroxidase, and an iron permease. Fet3, the apparent ferroxidase, is proposed to facilitate iron uptake by catalyzing the oxidation of reductase-generated Fe(II) to Fe(III) by O2; in this model, Fe(III) is the substrate for the iron permease, encoded by FTR1 (Kaplan, J., and O'Halloran, T. V. (1996) Science 271, 1510-1512). We show here that dioxygen also plays an essential role in the expression of these iron uptake activities. Cells grown anaerobically exhibited no Fe(III) reductase or high affinity iron uptake activity, even if assayed for these activities under air. Northern blot analysis showed that the amount of those mRNAs encoding proteins associated with this uptake was repressed in anaerobic cultures but was rapidly induced by exposure of the culture to dioxygen. The anaerobic repression was reduced in cells expressing an iron-independent form of the trans-activator, Aft1, a protein that regulates the expression of these proteins. Thus, the effect of oxygenation on this expression appeared due at least in part to the state or distribution of iron in the cells. In support of this hypothesis, the membrane-permeant Fe(II) chelator, 2, 2'-bipyridyl, in contrast to the impermeant chelator bathophenanthroline disulfonate, caused a strong and rapid induction of these transcripts under anaerobic conditions. An increase in the steady-state levels of iron-regulated transcripts upon oxygenation or 2,2'-bipyridyl addition occurred within 5 min, indicating that a relatively small, labile intracellular pool of Fe(II) regulates the expression of these activities. The strength of the anaerobic repression was dependent on the low affinity, Fe(II)-specific iron transporter, encoded by FET4, suggesting that this Fe(II) pool was linked in part to iron brought into the cell via Fet4 protein. The data suggest a model in which dioxygen directly or indirectly modulates the Fe(III)/Fe(II) ratio in an iron pool linked to Aft1 protein while bipyridyl increases this ratio by chelating Fe(II). These results indicate that dioxygen both modulates the sensitivity to iron-dependent transcriptional regulation and acts as substrate for Fet3 in the ferroxidase reaction catalyzed by this ceruloplasmin homologue.
酿酒酵母中的高亲和力铁摄取需要一种金属还原酶、一种多铜铁氧化酶和一种铁通透酶。Fet3是表面上的铁氧化酶,据推测它通过催化还原酶产生的Fe(II)被O2氧化为Fe(III)来促进铁摄取;在这个模型中,Fe(III)是由FTR1编码的铁通透酶的底物(卡普兰,J.,和奥哈洛伦,T. V.(1996年)《科学》271,1510 - 1512)。我们在此表明,双原子氧在这些铁摄取活性的表达中也起着至关重要的作用。即使在空气中检测这些活性,厌氧培养的细胞也没有表现出Fe(III)还原酶或高亲和力铁摄取活性。Northern印迹分析表明,编码与这种摄取相关蛋白质的那些mRNA的量在厌氧培养物中受到抑制,但通过将培养物暴露于双原子氧可迅速诱导其表达。在表达铁非依赖性形式的反式激活因子Aft1(一种调节这些蛋白质表达的蛋白质)的细胞中,厌氧抑制作用减弱。因此,氧合对这种表达的影响似乎至少部分归因于细胞中铁的状态或分布。支持这一假设的是,与不透膜的螯合剂4,7 - 二苯基 - 1,10 - 菲咯啉二磺酸不同,可透过膜的Fe(II)螯合剂2,2'-联吡啶在厌氧条件下引起这些转录本的强烈且快速诱导。在氧合或添加2,联吡啶后,铁调节转录本的稳态水平在5分钟内增加,表明相对少量的、不稳定的细胞内Fe(II)池调节这些活性的表达。厌氧抑制的强度取决于由FET4编码的低亲和力、Fe(II)特异性铁转运蛋白,这表明这个Fe(II)池部分与通过Fet4蛋白进入细胞的铁相关。数据提示了一个模型,其中双原子氧直接或间接调节与Aft1蛋白相关的铁池中Fe(III)/Fe(II)的比例,而联吡啶通过螯合Fe(II)增加这个比例。这些结果表明,双原子氧既调节对铁依赖性转录调控的敏感性,又在由这种铜蓝蛋白同源物催化的铁氧化酶反应中作为Fet3的底物。