Suppr超能文献

Gastric inhibitory polypeptide and effects of glycation on glucose transport and metabolism in isolated mouse abdominal muscle.

作者信息

O'Harte F P, Gray A M, Flatt P R

机构信息

School of Biomedical Sciences, University of Ulster, Londonderry, UK.

出版信息

J Endocrinol. 1998 Feb;156(2):237-43. doi: 10.1677/joe.0.1560237.

Abstract

This study investigates the effects of gastric inhibitory polypeptide (GIP) and glycated GIP (glucitol adduct of GIP) on glucose uptake and metabolism in muscle. Glycated GIP (molecular mass 5147.2 Da) was purified by HPLC following in vitro incubation under hyperglycaemic reducing conditions (24 h at pH 7.4). GIP (10(-10)-10(-8) mol/l) significantly stimulated (1.4- to 1.5-fold, P < 0.001) 2-deoxy-D-[1-3H]glucose uptake in abdominal muscle pieces from 3- to 5-week-old lean mice compared with control incubations (without GIP). This stimulatory effect on glucose uptake at 10(-10)-10(-9) mol/l was decreased by 13-20% following glycation of the peptide (P < 0.05). GIP (10(-9) and 10(-8) mol/l) induced a stepwise 1.4- to 1.7-fold increase (P < 0.01, P < 0.001 respectively) in [14C]glucose oxidation compared with controls. This effect on glucose oxidation was diminished by 32% with 10(-8) mol/l glycated GIP (P < 0.05). GIP (10(-9) and 10(-8) mol/l) induced a 1.4- to 1.8-fold increase in [14C]glucose incorporation into muscle glycogen (glycogenesis) compared with controls. Glycated GIP (10(-8) mol/l) exhibited a 41% decrease in glycogenic activity (P < 0.01). GIP (10(-10)-10(-8) mol/l) stimulated lactate production in isolated abdominal muscle (1.2- to 1.3-fold, P < 0.05); however glycated GIP did not exert a significant effect. This study demonstrates for the first time that GIP promotes glucose uptake, glucose oxidation and glycogenesis in muscle tissue. Furthermore, modification of GIP through glycation diminishes its biological effectiveness.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验