Suppr超能文献

决定产妇住院时长的医院及患者相关特征:一种分层线性模型方法。

Hospital- and patient-related characteristics determining maternity length of stay: a hierarchical linear model approach.

作者信息

Leung K M, Elashoff R M, Rees K S, Hasan M M, Legorreta A P

机构信息

Quality Initiatives Division, Health Net, Woodland Hills, Calif. 91367, USA.

出版信息

Am J Public Health. 1998 Mar;88(3):377-81. doi: 10.2105/ajph.88.3.377.

Abstract

OBJECTIVES

The purpose of this study was to identify factors related to pregnancy and childbirth that might be predictive of a patient's length of stay after delivery and to model variations in length of stay.

METHODS

California hospital discharge data on maternity patients (n = 499,912) were analyzed. Hierarchical linear modeling was used to adjust for patient case mix and hospital characteristics and to account for the dependence of outcome variables within hospitals.

RESULTS

Substantial variation in length of stay among patients was observed. The variation was mainly attributed to delivery type (vaginal or cesarean section), the patient's clinical risk factors, and severity of complications (if any). Furthermore, hospitals differed significantly in maternity lengths of stay even after adjustment for patient case mix.

CONCLUSIONS

Developing risk-adjusted models for length of stay is a complex process but is essential for understanding variation. The hierarchical linear model approach described here represents a more efficient and appropriate way of studying interhospital variations than the traditional regression approach.

摘要

目的

本研究旨在确定与妊娠和分娩相关的因素,这些因素可能预测患者产后住院时间,并对住院时间的差异进行建模。

方法

分析了加利福尼亚州产妇患者(n = 499,912)的医院出院数据。采用分层线性模型来调整患者病例组合和医院特征,并考虑医院内部结果变量的依赖性。

结果

观察到患者住院时间存在显著差异。这种差异主要归因于分娩类型(阴道分娩或剖宫产)、患者的临床风险因素以及并发症的严重程度(如有)。此外,即使在调整患者病例组合后,各医院的产妇住院时间仍存在显著差异。

结论

开发住院时间的风险调整模型是一个复杂的过程,但对于理解差异至关重要。本文所述的分层线性模型方法比传统回归方法更有效、更适用于研究医院间的差异。

相似文献

10
A discordancy test approach to identify outliers of length of hospital stay.
Stat Med. 1998 Oct 15;17(19):2199-206. doi: 10.1002/(sici)1097-0258(19981015)17:19<2199::aid-sim917>3.0.co;2-2.

引用本文的文献

3
Hospital length of stay: A cross-specialty analysis and Beta-geometric model.住院时间:跨专科分析与 Beta-几何模型。
PLoS One. 2023 Jul 13;18(7):e0288239. doi: 10.1371/journal.pone.0288239. eCollection 2023.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验