Boonmark N W, Lawn R M
Falk Cardiovascular Research Center, Stanford University School of Medicine, CA 94305-5246, USA.
Clin Genet. 1997 Nov;52(5):355-60. doi: 10.1111/j.1399-0004.1997.tb04353.x.
The atherogenicity of Lp(a) is attributable to the binding of its apolipoprotein(a) component to fibrin and other plasminogen substrates. It can attenuate the activation of plasminogen, diminishing plasmin-dependent fibrinolysis and transforming growth factor-beta activation. Apolipoprotein(a) contains a major lysine-binding site in one of its kringle domains. Destroying this site by site-directed mutagenesis greatly reduces the binding of apolipoprotein(a) to lysine and fibrin. Transgenic mice expressing wild-type apolipoprotein(a) have a 5-fold increase in the development of lipid lesions, as well as a large increase in the focal deposition of apolipoprotein(a) in the aorta, compared to the lysine-binding site mutant strain and to non-transgenic litter mates. Although the adaptive function of apolipoprotein(a) remains obscure, a gene with similar structure has evolved by independent remodeling of the plasminogen twice during the course of mammalian evolution.