Lee C C, Craig S P, Eakin A E
Laboratory of Molecular Parasitology & Drug Design, University of North Carolina at Chapel Hill 27599-7360, USA.
Biochemistry. 1998 Mar 10;37(10):3491-8. doi: 10.1021/bi9720179.
Early studies involving purine salvage in Salmonella typhimurium resulted in the isolation and identification of a mutant strain possessing a genetically modified hypoxanthine phosphoribosyl-transferase (HPRT) with enhanced substrate specificity for guanine [Benson, C. E., and Gots, J. S. (1975) J. Bacteriol. 121, 77-82]. To explore the molecular basis for this altered substrate specificity in the mutant hpt gene product, degenerate oligonucleotide primers, designed according to the N- and C-termini of the HPRT of Escherichia coli, were used in polymerase chain reactions to amplify both the mutant and wild-type S. typhimurium hpt genes from genomic DNA. Analysis of the deduced amino acid sequences revealed that a single base mutation resulted in the encoding of a Thr in the mutant HPRT, instead of an Ile found in the wild-type enzyme, at a position analogous to position 192 (Leu-192) of the human HPRT. Comparison of kinetic data for purified recombinant mutant and wild-type HPRTs showed no difference in the overall catalytic efficiency (kcat/K(m)) with hypoxanthine as substrate, but with guanine, the mutant enzyme exhibited a more than 50-fold higher kcat/K(m) largely as a result of a decrease of nearly 2 orders of magnitude in K(m). Involvement in substrate binding of the cognate amino acid at position 192 in the human HPRT was investigated using site-directed mutagenesis. Mutation of Leu-192 to Thr did not significantly alter kcat/K(m) values for hypoxanthine and guanine compared to wild-type, and replacement of Leu-192 with Ile had no significant change in kinetics for either hypoxanthine or PRPP. However, this Ile substitution resulted in an over 15-fold decrease in the kcat/K(m) for guanine due to a greater than 15-fold increase in K(m). These results demonstrate that a single active site amino acid substitution in HPRTs can significantly alter the specificity for binding guanine.
早期关于鼠伤寒沙门氏菌中嘌呤补救途径的研究,导致分离和鉴定出一种突变菌株,该菌株拥有一种经过基因改造的次黄嘌呤磷酸核糖转移酶(HPRT),对鸟嘌呤具有增强的底物特异性[本森,C. E.,和戈茨,J. S.(1975年)《细菌学杂志》121卷,77 - 82页]。为了探究突变型hpt基因产物中这种改变的底物特异性的分子基础,根据大肠杆菌HPRT的N端和C端设计的简并寡核苷酸引物,用于聚合酶链反应,以从基因组DNA中扩增突变型和野生型鼠伤寒沙门氏菌的hpt基因。对推导的氨基酸序列分析表明,单个碱基突变导致突变型HPRT中编码苏氨酸,而不是野生型酶中的异亮氨酸,该位置类似于人HPRT的192位(亮氨酸 - 192)。对纯化的重组突变型和野生型HPRT的动力学数据比较表明,以次黄嘌呤为底物时,总体催化效率(kcat/K(m))没有差异,但对于鸟嘌呤,突变型酶的kcat/K(m)高出50多倍,这主要是由于K(m)下降了近2个数量级。使用定点诱变研究了人HPRT中192位同源氨基酸在底物结合中的作用。与野生型相比,将亮氨酸 - 192突变为苏氨酸并没有显著改变次黄嘌呤和鸟嘌呤的kcat/K(m)值,用异亮氨酸取代亮氨酸 - 192对次黄嘌呤或PRPP的动力学没有显著变化。然而,由于K(m)增加了超过15倍,这种异亮氨酸取代导致鸟嘌呤的kcat/K(m)下降了超过15倍。这些结果表明,HPRT中单个活性位点氨基酸取代可显著改变结合鸟嘌呤的特异性。