Stoeckler J D, Poirot A F, Smith R M, Parks R E, Ealick S E, Takabayashi K, Erion M D
Section of Molecular & Biochemical Pharmacology, Division of Biology & Medicine, Brown University, Providence, Rhode Island 02912, USA.
Biochemistry. 1997 Sep 30;36(39):11749-56. doi: 10.1021/bi961971n.
Human purine nucleoside phosphorylase (PNP) is highly specific for 6-oxopurine nucleosides with a catalytic efficiency (kcat/KM) for inosine 350000-fold greater than for adenosine. Crystallographic studies identified Asn243 and Glu201 as the residues largely responsible for the substrate specificity. Results from mutagenesis studies demonstrated that the side chains for both residues were also essential for efficient catalysis [Erion, M. D., et al. (1997a) Biochemistry 36, 11725-11734]. Additional mechanistic studies predicted that Asn243 participated in catalysis by stabilizing the transition state structure through hydrogen bond donation to N7 of the purine base [Erion, M. D., et al. (1997b) Biochemistry 36, 11735-11748]. In an effort to alter the substrate specificity of human PNP, mutants of Asn243 and Glu201 were designed to reverse hydrogen bond donor and acceptor interactions with the purine base. Replacement of Asn243 with Asp, but not with other amino acids, led to a 5000-fold increase in kcat for adenosine and a 4300-fold increase in overall catalytic efficiency. Furthermore, the Asn243Asp mutant showed a 2.4-fold preference for adenosine relative to inosine and a 800000-fold change in substrate specificity (kcat/KM) relative to wild-type PNP. The double mutant, Asn243Asp::Glu201Gln, exhibited a 190-fold increase in catalytic efficiency with adenosine relative to wild-type PNP, a 480-fold preference for adenosine relative to inosine, and a 1.7 x 10(8)-fold change in preference for adenosine over inosine relative to wild-type PNP. The Asn243Asp mutant was also shown to synthesize 2,6-diaminopurine riboside with a catalytic efficiency (1.4 x 10(6) M-1 s-1) on the same order of magnitude as wild-type PNP with its natural substrates hypoxanthine and guanine. The Asn243Asp mutants represent examples in which protein engineering significantly altered substrate specificity while maintaining high catalytic efficiency.
人嘌呤核苷磷酸化酶(PNP)对6-氧嘌呤核苷具有高度特异性,其对肌苷的催化效率(kcat/KM)比对腺苷的催化效率高350000倍。晶体学研究确定Asn243和Glu201是在很大程度上决定底物特异性的残基。诱变研究结果表明,这两个残基的侧链对于高效催化也是必不可少的[埃里恩,M. D.等人(1997a)《生物化学》36,11725 - 11734]。更多的机理研究预测,Asn243通过向嘌呤碱基的N7提供氢键来稳定过渡态结构从而参与催化[埃里恩,M. D.等人(1997b)《生物化学》36,11735 - 11748]。为了改变人PNP的底物特异性,设计了Asn243和Glu201的突变体,以逆转与嘌呤碱基的氢键供体和受体相互作用。用Asp取代Asn243,但用其他氨基酸取代则不然,这导致腺苷的kcat增加了5000倍,总体催化效率增加了4300倍。此外,Asn243Asp突变体对腺苷相对于肌苷的偏好性增加了2.4倍,相对于野生型PNP,底物特异性(kcat/KM)变化了800000倍。双突变体Asn243Asp::Glu201Gln相对于野生型PNP,对腺苷的催化效率提高了190倍,对腺苷相对于肌苷的偏好性增加了480倍,相对于野生型PNP,对腺苷相对于肌苷的偏好性变化了1.7×10^8倍。Asn243Asp突变体还被证明能合成2,6 - 二氨基嘌呤核苷,其催化效率(1.4×10^6 M^-1 s^-1)与野生型PNP催化其天然底物次黄嘌呤和鸟嘌呤的催化效率处于同一数量级。Asn243Asp突变体代表了蛋白质工程在保持高催化效率的同时显著改变底物特异性的实例。