Suppr超能文献

Response of lens epithelial cells to hydrogen peroxide stress and the protective effect of caloric restriction.

作者信息

Li Y, Yan Q, Pendergrass W R, Wolf N S

机构信息

Department of Pathology, University of Washington, Seattle 98195-7470, USA.

出版信息

Exp Cell Res. 1998 Mar 15;239(2):254-63. doi: 10.1006/excr.1997.3870.

Abstract

Hydrogen peroxide (H2O2) has been reported to be present at significant levels in the lens and aqueous humor in some cataract patients and suggested as a possible source of chronically inflicted damage to lens epithelial (LE) cells. We measured H2O2 effects on bovine and mouse LE cells and determined whether LE cells from old calorically restricted mice were more resistant to H2O2-induced cellular damage than those of same age ad libitum fed (AL) mice. Bovine lens epithelial cells were exposed to H2O2 at 40 or 400 microM for 2 h and then allowed to recover from the stress. The cells were assayed for DNA damage, DNA synthesis, cell viability, cell morphology, response to growth stimuli, and proliferation potential. Hydrogen peroxide-treated cells showed an increased DNA unwinding 50% greater than that for untreated controls. These DNA strand breaks appeared to be almost completely rejoined by 30 min following removal of the cells from a 2-h exposure. The 40 microM exposure did not produce a significantly lower DNA synthesis rate than the control, it responded to growth factor stimuli, and it replicated as did the control cells after removal of H2O2. The 400 microM H2O2 severely affected DNA synthesis and replication, as shown by increased cell size and by markedly reduced clonal cell growth. The cells did not respond to growth stimulation by serum or growth factors and lost irreversibly the capacity to proliferate. The responses of LE cells from old adlib diet (AL) and calorically restricted (CR) mice to H2O2 were significantly different. Exposure of LE cells to 20, 40, or 100 microM H2O2 for 1 h induces a significant loss of cellular proliferation in cells from old AL mice. LE cells from long-term CR mice of the same strain and age were more resistant to oxidative damage at all three concentrations of H2O2 than those of both old and young AL mice and showed a significantly higher proliferation potential following treatment. It is concluded that CR results in superior resistance to reactive oxygen radicals in the lens epithelium.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验