Suppr超能文献

用于指数和或正弦和建模的迭代快速正交搜索。

Iterative fast orthogonal search for modeling by a sum of exponentials or sinusoids.

作者信息

Korenberg M J, Adeney K M

机构信息

Department of Electrical and Computer Engineering, Queen's University, Kingston, Ontario, Canada.

出版信息

Ann Biomed Eng. 1998 Mar-Apr;26(2):315-27. doi: 10.1114/1.90.

Abstract

Accurate sinusoidal series models of biological time-series data may be obtained using a modeling algorithm known as fast orthogonal search (FOS). FOS does not require equally spaced data, and can resolve sinusoidal frequencies much more closely spaced than can a discrete Fourier transform. FOS has been less successful at obtaining accurate exponential series models. We here consider a modification of FOS in which iteration of the original procedure is used to further reduce the mean-squared error (m.s.e.) between model and data, approaching a minimum in the m.s.e. Iteration of the FOS procedure greatly improves the accuracy of estimated exponential series models. The application of iterative FOS (IFOS) to exponential and sinusoidal series models is described. Finally, the use of FOS and IFOS procedures for finding a single model from the results of multiple experiments is described.

摘要

使用一种称为快速正交搜索(FOS)的建模算法,可以获得生物时间序列数据的精确正弦级数模型。FOS不需要等间距数据,并且能够分辨比离散傅里叶变换更紧密间隔的正弦频率。FOS在获得精确指数级数模型方面不太成功。我们在此考虑对FOS进行修改,其中使用原始过程的迭代来进一步降低模型与数据之间的均方误差(m.s.e.),使m.s.e.接近最小值。FOS过程的迭代极大地提高了估计指数级数模型的准确性。描述了迭代FOS(IFOS)在指数和正弦级数模型中的应用。最后,描述了使用FOS和IFOS过程从多个实验结果中找到单个模型的方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验