Suppr超能文献

Applications of fast orthogonal search: time-series analysis and resolution of signals in noise.

作者信息

Korenberg M J, Paarmann L D

机构信息

Department of Electrical Engineering, Queen's University, Kingston, Ontario, Canada.

出版信息

Ann Biomed Eng. 1989;17(3):219-31. doi: 10.1007/BF02368043.

Abstract

In this paper a technique is examined for obtaining accurate and parsimonious sinusoidal series representations of biological time-series data, and for resolving sinusoidal signals in noise. The technique operates via a fast orthogonal search method discussed in the paper, and achieves economy of representation by finding the most significant sinusoidal frequencies first, in a least squares fit sense. Another reason for the parsimony in representation is that the identified sinusoidal series model is not restricted to frequencies which are commensurate or integral multiples of the fundamental frequency corresponding to the record length. Biological applications relate to spectral analysis of noisy time-series data such as EEG, ECG, EMG, EOG, and to speech analysis. Simulations are provided to demonstrate precise detection of component frequencies and weights in short data records, coping with missing or unequally spaced data, and recovery of signals heavily contaminated with noise. The technique is also shown to be capable of higher frequency resolution than is achievable by conventional Fourier series analysis.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验