Rosenwald S E, Dontha N, Kuhr W G
Department of Chemistry, University of California, Riverside 92521, USA.
Anal Chem. 1998 Mar 15;70(6):1133-40. doi: 10.1021/ac970801t.
A laser-generated interference pattern was used to remove enzyme from micrometer-wide stripes on an enzyme-covered carbon fiber microelectrode surface to create regions of facile electron transfer. Fluorescence microscopy was used to visualize fluorophore-tagged enzyme to indicate where the adsorbed enzyme remained on the surface. The electrochemical kinetics of the carbon fiber surface were examined to see if electron-transfer sites could indeed be segregated from enzyme adsorbed across the entire surface. CCD imaging of the electrochemical luminescence of Ru(bpy)3(2+) was used to verify the segregation between photoablated sites (with facile electron-transfer kinetics) and surfaces with adsorbed enzyme (which exhibit slow electron-transfer kinetics). The laser-ablated surface could also be distinguished from the enzyme-covered carbon surface with atomic force microscopy. Thus, photoablation of the surface of a protein-covered carbon fiber microelectrode with an interference pattern generated by a Nd:YAG laser allows the activation of 1.7-micron-wide bands of the electrode surface (available for facile electron transfer) while leaving 2.6-micron-wide enzyme-modified areas intact, thereby producing electroactive regions directly adjacent to enzyme modified regions of the same surface.
利用激光产生的干涉图案从酶覆盖的碳纤维微电极表面的微米宽条纹上去除酶,以创建易于电子转移的区域。使用荧光显微镜观察荧光团标记的酶,以指示吸附的酶在表面上的残留位置。研究了碳纤维表面的电化学动力学,以确定电子转移位点是否确实可以与吸附在整个表面的酶分离。使用Ru(bpy)3(2+)的电化学发光的电荷耦合器件(CCD)成像来验证光烧蚀位点(具有容易的电子转移动力学)和吸附有酶的表面(表现出缓慢的电子转移动力学)之间的分离。激光烧蚀的表面也可以通过原子力显微镜与酶覆盖的碳表面区分开来。因此,用Nd:YAG激光产生的干涉图案对蛋白质覆盖的碳纤维微电极表面进行光烧蚀,可以激活电极表面1.7微米宽的条带(可用于容易的电子转移),同时使2.6微米宽的酶修饰区域保持完整,从而在同一表面上直接产生与酶修饰区域相邻的电活性区域。