Oexle K
Department of Pediatrics and Human Genetics, Hannover Medical School (MHH), Carl-Neuberg-Str. 1, Hannover, D-30625, Germany.
J Theor Biol. 1998 Feb 21;190(4):369-77. doi: 10.1006/jtbi.1997.0559.
Southern blot analysis of terminal restriction fragments (TRFs) is the standard method for quantitative examination of telomere length distributions. Since TRFs contain a subtelomeric component, central parameters of the TRF distribution n(L) such as the arithmetic mean (M) or the median (Me) cannot be derived directly from Southern blot data, i.e. from the optical density distribution OD(L). Several estimates have been applied instead; the seeming arithmetic mean A, the "center of mass" C, and the positions of maximal (P) and half-maximal optical density (P(1/2)). We show that C> A> M for any non-truncated distributions n(L), and P> M> P1/2 for any symmetrical unimodal n(L). Symmetric appearance on a Southern blot, however, suggests positive skewness of n(L). Thus, a lognormal form of n(L) may be considered. Then, C> A> M> P=Me> P(1/2). Alternatively, a Weibull distribution may be assumed. The latter is compatible with negative feedback-regulation of the telomere lengths. Using the maximum likelihood method we compare these distributions with FISH-data on telomere lengths in different cell types. The fit of the lognormal distribution is clearly superior. Lognormal genesis may relate to telomere breakage and recombination. Truncation of the upper end of the TRF distribution is possible due to Southern blot artifacts. Thereby, the order of the estimates may change to P> C> A. Having minimal sensitivity to truncation, P seems to be the optimal choice. however, the variability of P is high since peakedness of OD(L) and DNA length resolution are inversely related.
端粒限制片段(TRF)的Southern印迹分析是定量检测端粒长度分布的标准方法。由于TRF包含一个亚端粒成分,TRF分布n(L)的中心参数,如算术平均值(M)或中位数(Me),不能直接从Southern印迹数据,即光密度分布OD(L)中得出。因此应用了几种估计方法;表面算术平均值A、“质心”C以及最大光密度位置(P)和半最大光密度位置(P(1/2))。我们表明,对于任何非截断分布n(L),C > A > M,对于任何对称单峰n(L),P > M > P1/2。然而,Southern印迹上的对称外观表明n(L)呈正偏态。因此,可以考虑n(L)的对数正态形式。那么,C > A > M > P = Me > P(1/2)。或者,可以假设为威布尔分布。后者与端粒长度的负反馈调节兼容。我们使用最大似然法将这些分布与不同细胞类型中端粒长度的FISH数据进行比较。对数正态分布的拟合明显更优。对数正态起源可能与端粒断裂和重组有关。由于Southern印迹假象,TRF分布上端的截断是可能的。由此,估计值的顺序可能变为P > C > A。由于对截断的敏感性最小,P似乎是最佳选择。然而,由于OD(L)的峰值与DNA长度分辨率成反比,P的变异性很高。