Gao H Q, Boyer P L, Arnold E, Hughes S H
ABL-Basic Research Program, NCI-Frederick Cancer Research and Development Center, Frederick, MD 21702-1201, USA.
J Mol Biol. 1998 Apr 3;277(3):559-72. doi: 10.1006/jmbi.1998.1624.
Based on structural analyses and on the behavior of mutants, we suggest that the polymerase domain of HIV-1 reverse transcriptase (RT) plays a critical role in holding and appropriately positioning the template-primer both at the polymerase active site and at the RNase H active site. For RT to successfully copy the viral RNA genome, RNase H must cleave the RNA with absolute precision. We believe that a combination of the structure of the template-primer and its precise positioning are responsible for the specific cleavages RNase H makes. We have proposed that resistance of HIV-1 RT to nucleoside analogs involves a subtle repositioning of the template-primer. This hypothesis is based on both structural and biochemical analyses. Mutations that confer resistance to nucleoside analogs do not cluster at the polymerase active site; however, they are in positions where they could alter the interaction between RT and the template-primer. If, as we have hypothesized, the polymerase domain is primarily responsible for positioning the template-primer and RNase H cleavage depends on this positioning, it should be possible to use RNase H cleavage to monitor at least some of the major changes in the position of the template-primer. We have used three assays (polymerase, RNase H, and strand transfer) to investigate the effects of mutations in the polymerase domain, including mutations that confer resistance to nucleotide analogs, on HIV-1 RT. All three assays involve RNA sequences derived from the viral genome. The data show that alterations in the polymerase domain, in particular, mutations that are in positions that would be expected to alter the interaction of RT with the template-primer, can alter both the efficiency and specificity of RNase H cleavage. These results are discussed in light of the structure of HIV-1 RT.
基于结构分析和突变体的行为,我们认为HIV-1逆转录酶(RT)的聚合酶结构域在将模板引物保持在聚合酶活性位点和RNase H活性位点并使其正确定位方面起着关键作用。为了使RT成功复制病毒RNA基因组,RNase H必须精确切割RNA。我们认为模板引物的结构及其精确定位共同决定了RNase H进行的特异性切割。我们提出HIV-1 RT对核苷类似物的抗性涉及模板引物的细微重新定位。这一假设基于结构和生化分析。赋予对核苷类似物抗性的突变并不聚集在聚合酶活性位点;然而,它们所处的位置可能会改变RT与模板引物之间的相互作用。如果如我们所假设的,聚合酶结构域主要负责模板引物的定位,且RNase H切割依赖于这种定位,那么应该可以利用RNase H切割来监测模板引物位置的至少一些主要变化。我们使用了三种测定方法(聚合酶、RNase H和链转移)来研究聚合酶结构域中的突变,包括赋予对核苷酸类似物抗性的突变,对HIV-1 RT的影响。所有这三种测定方法都涉及源自病毒基因组的RNA序列。数据表明,聚合酶结构域的改变,特别是那些预期会改变RT与模板引物相互作用的位置上的突变,能够改变RNase H切割的效率和特异性。我们根据HIV-1 RT的结构对这些结果进行了讨论。