Suppr超能文献

神经元尖峰序列数据的变点分析。

Change-point analysis of neuron spike train data.

作者信息

Bélisle P, Joseph L, MacGibbon B, Wolfson D B, du Berger R

机构信息

Montreal General Hospital, Department of Medicine, Quebec, Canada.

出版信息

Biometrics. 1998 Mar;54(1):113-23.

PMID:9544510
Abstract

In many medical experiments, data are collected across time, over a number of similar trials, or over a number of experimental units. As is the case of neuron spike train studies, these data may be in the form of counts of events per unit of time. These counts may be correlated within each trial. It is often of interest to know if the introduction of an intervention, such as the application of a stimulus, affects the distribution of the counts over the course of the experiment. In such investigations, each trial generates a sequence of data that may or may not contain a change in distribution at some point in time. Each sequence of integer counts can be viewed as arising from a Poisson process and are therefore independently distributed or as an integer-valued time series that allows for correlations between these counts. The main aim of this paper is to show how the ensemble of sample paths may be used to make inference about the distribution of the instantaneous times of change in a given population. This will be accomplished using a Bayesian hierarchical model for these change-points in time. A bonus of these models is they also allow for inference about the probability of a change in each unit and the magnitude of the effects, if any. The use of such change-point models on integer-valued time series is illustrated on neuron spike train data, although the methods can be applied to other situations where integer-valued processes arise.

摘要

在许多医学实验中,数据是在一段时间内、多个相似试验中或多个实验单元上收集的。就神经元脉冲序列研究而言,这些数据可能是每单位时间内事件计数的形式。这些计数在每次试验中可能是相关的。了解诸如施加刺激等干预措施的引入是否会在实验过程中影响计数的分布通常是很有意义的。在这类研究中,每次试验都会生成一系列数据,这些数据在某个时间点可能会也可能不会出现分布变化。每一个整数计数序列都可以看作是由泊松过程产生的,因此是独立分布的,或者看作是一个允许这些计数之间存在相关性的整数值时间序列。本文的主要目的是展示如何利用样本路径的集合来推断给定总体中瞬时变化时间的分布。这将通过对这些时间变化点使用贝叶斯层次模型来实现。这些模型的一个优点是它们还允许推断每个单元发生变化的概率以及效应的大小(如果有的话)。本文在神经元脉冲序列数据上展示了这种变化点模型在整数值时间序列上的应用,尽管这些方法也可以应用于出现整数值过程的其他情况。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验