Suppr超能文献

核平滑刺激后时间直方图中神经元反应的量化与分类

Quantification and classification of neuronal responses in kernel-smoothed peristimulus time histograms.

作者信息

Hill Michael R H, Fried Itzhak, Koch Christof

机构信息

California Institute of Technology, Pasadena, California;

Department of Neurosurgery, University of California, Los Angeles, California; and.

出版信息

J Neurophysiol. 2015 Feb 15;113(4):1260-74. doi: 10.1152/jn.00595.2014. Epub 2014 Dec 4.

Abstract

Peristimulus time histograms are a widespread form of visualizing neuronal responses. Kernel convolution methods transform these histograms into a smooth, continuous probability density function. This provides an improved estimate of a neuron's actual response envelope. We here develop a classifier, called the h-coefficient, to determine whether time-locked fluctuations in the firing rate of a neuron should be classified as a response or as random noise. Unlike previous approaches, the h-coefficient takes advantage of the more precise response envelope estimation provided by the kernel convolution method. The h-coefficient quantizes the smoothed response envelope and calculates the probability of a response of a given shape to occur by chance. We tested the efficacy of the h-coefficient in a large data set of Monte Carlo simulated smoothed peristimulus time histograms with varying response amplitudes, response durations, trial numbers, and baseline firing rates. Across all these conditions, the h-coefficient significantly outperformed more classical classifiers, with a mean false alarm rate of 0.004 and a mean hit rate of 0.494. We also tested the h-coefficient's performance in a set of neuronal responses recorded in humans. The algorithm behind the h-coefficient provides various opportunities for further adaptation and the flexibility to target specific parameters in a given data set. Our findings confirm that the h-coefficient can provide a conservative and powerful tool for the analysis of peristimulus time histograms with great potential for future development.

摘要

刺激时间直方图是一种广泛用于可视化神经元反应的形式。核卷积方法将这些直方图转换为平滑、连续的概率密度函数。这提供了对神经元实际反应包络的改进估计。我们在此开发了一种称为h系数的分类器,以确定神经元放电率中的锁时波动应被分类为反应还是随机噪声。与以前的方法不同,h系数利用了核卷积方法提供的更精确的反应包络估计。h系数对平滑后的反应包络进行量化,并计算给定形状的反应偶然发生的概率。我们在一个大型蒙特卡罗模拟平滑刺激时间直方图数据集中测试了h系数的功效,该数据集具有不同的反应幅度、反应持续时间、试验次数和基线放电率。在所有这些条件下,h系数明显优于更经典的分类器,平均误报率为0.004,平均命中率为0.494。我们还在一组人类记录的神经元反应中测试了h系数的性能。h系数背后的算法为进一步调整提供了各种机会,并具有针对给定数据集中特定参数的灵活性。我们的研究结果证实,h系数可以为刺激时间直方图的分析提供一种保守且强大的工具,具有很大的未来发展潜力。

相似文献

2
5
Optimizing time histograms for non-Poissonian spike trains.优化非泊松分布尖峰序列的时间直方图。
Neural Comput. 2011 Dec;23(12):3125-44. doi: 10.1162/NECO_a_00213. Epub 2011 Sep 15.
8
9
An efficient algorithm for continuous time cross correlogram of spike trains.一种用于尖峰序列连续时间互相关图的高效算法。
J Neurosci Methods. 2008 Mar 15;168(2):514-23. doi: 10.1016/j.jneumeth.2007.10.005. Epub 2007 Oct 22.

本文引用的文献

4
Kernel bandwidth optimization in spike rate estimation.尖峰速率估计中的核带宽优化
J Comput Neurosci. 2010 Aug;29(1-2):171-182. doi: 10.1007/s10827-009-0180-4. Epub 2009 Aug 5.
7
Analysis of Firing Pafferns in Single Neurons.单个神经元放电模式分析。
Science. 1960 Jun 17;131(3416):1811-2. doi: 10.1126/science.131.3416.1811.
8
A method for selecting the bin size of a time histogram.一种选择时间直方图箱大小的方法。
Neural Comput. 2007 Jun;19(6):1503-27. doi: 10.1162/neco.2007.19.6.1503.
9
Error bars in experimental biology.实验生物学中的误差线
J Cell Biol. 2007 Apr 9;177(1):7-11. doi: 10.1083/jcb.200611141.
10

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验