Hill Michael R H, Fried Itzhak, Koch Christof
California Institute of Technology, Pasadena, California;
Department of Neurosurgery, University of California, Los Angeles, California; and.
J Neurophysiol. 2015 Feb 15;113(4):1260-74. doi: 10.1152/jn.00595.2014. Epub 2014 Dec 4.
Peristimulus time histograms are a widespread form of visualizing neuronal responses. Kernel convolution methods transform these histograms into a smooth, continuous probability density function. This provides an improved estimate of a neuron's actual response envelope. We here develop a classifier, called the h-coefficient, to determine whether time-locked fluctuations in the firing rate of a neuron should be classified as a response or as random noise. Unlike previous approaches, the h-coefficient takes advantage of the more precise response envelope estimation provided by the kernel convolution method. The h-coefficient quantizes the smoothed response envelope and calculates the probability of a response of a given shape to occur by chance. We tested the efficacy of the h-coefficient in a large data set of Monte Carlo simulated smoothed peristimulus time histograms with varying response amplitudes, response durations, trial numbers, and baseline firing rates. Across all these conditions, the h-coefficient significantly outperformed more classical classifiers, with a mean false alarm rate of 0.004 and a mean hit rate of 0.494. We also tested the h-coefficient's performance in a set of neuronal responses recorded in humans. The algorithm behind the h-coefficient provides various opportunities for further adaptation and the flexibility to target specific parameters in a given data set. Our findings confirm that the h-coefficient can provide a conservative and powerful tool for the analysis of peristimulus time histograms with great potential for future development.
刺激时间直方图是一种广泛用于可视化神经元反应的形式。核卷积方法将这些直方图转换为平滑、连续的概率密度函数。这提供了对神经元实际反应包络的改进估计。我们在此开发了一种称为h系数的分类器,以确定神经元放电率中的锁时波动应被分类为反应还是随机噪声。与以前的方法不同,h系数利用了核卷积方法提供的更精确的反应包络估计。h系数对平滑后的反应包络进行量化,并计算给定形状的反应偶然发生的概率。我们在一个大型蒙特卡罗模拟平滑刺激时间直方图数据集中测试了h系数的功效,该数据集具有不同的反应幅度、反应持续时间、试验次数和基线放电率。在所有这些条件下,h系数明显优于更经典的分类器,平均误报率为0.004,平均命中率为0.494。我们还在一组人类记录的神经元反应中测试了h系数的性能。h系数背后的算法为进一步调整提供了各种机会,并具有针对给定数据集中特定参数的灵活性。我们的研究结果证实,h系数可以为刺激时间直方图的分析提供一种保守且强大的工具,具有很大的未来发展潜力。