Suppr超能文献

核平滑刺激后时间直方图中神经元反应的量化与分类

Quantification and classification of neuronal responses in kernel-smoothed peristimulus time histograms.

作者信息

Hill Michael R H, Fried Itzhak, Koch Christof

机构信息

California Institute of Technology, Pasadena, California;

Department of Neurosurgery, University of California, Los Angeles, California; and.

出版信息

J Neurophysiol. 2015 Feb 15;113(4):1260-74. doi: 10.1152/jn.00595.2014. Epub 2014 Dec 4.

Abstract

Peristimulus time histograms are a widespread form of visualizing neuronal responses. Kernel convolution methods transform these histograms into a smooth, continuous probability density function. This provides an improved estimate of a neuron's actual response envelope. We here develop a classifier, called the h-coefficient, to determine whether time-locked fluctuations in the firing rate of a neuron should be classified as a response or as random noise. Unlike previous approaches, the h-coefficient takes advantage of the more precise response envelope estimation provided by the kernel convolution method. The h-coefficient quantizes the smoothed response envelope and calculates the probability of a response of a given shape to occur by chance. We tested the efficacy of the h-coefficient in a large data set of Monte Carlo simulated smoothed peristimulus time histograms with varying response amplitudes, response durations, trial numbers, and baseline firing rates. Across all these conditions, the h-coefficient significantly outperformed more classical classifiers, with a mean false alarm rate of 0.004 and a mean hit rate of 0.494. We also tested the h-coefficient's performance in a set of neuronal responses recorded in humans. The algorithm behind the h-coefficient provides various opportunities for further adaptation and the flexibility to target specific parameters in a given data set. Our findings confirm that the h-coefficient can provide a conservative and powerful tool for the analysis of peristimulus time histograms with great potential for future development.

摘要

刺激时间直方图是一种广泛用于可视化神经元反应的形式。核卷积方法将这些直方图转换为平滑、连续的概率密度函数。这提供了对神经元实际反应包络的改进估计。我们在此开发了一种称为h系数的分类器,以确定神经元放电率中的锁时波动应被分类为反应还是随机噪声。与以前的方法不同,h系数利用了核卷积方法提供的更精确的反应包络估计。h系数对平滑后的反应包络进行量化,并计算给定形状的反应偶然发生的概率。我们在一个大型蒙特卡罗模拟平滑刺激时间直方图数据集中测试了h系数的功效,该数据集具有不同的反应幅度、反应持续时间、试验次数和基线放电率。在所有这些条件下,h系数明显优于更经典的分类器,平均误报率为0.004,平均命中率为0.494。我们还在一组人类记录的神经元反应中测试了h系数的性能。h系数背后的算法为进一步调整提供了各种机会,并具有针对给定数据集中特定参数的灵活性。我们的研究结果证实,h系数可以为刺激时间直方图的分析提供一种保守且强大的工具,具有很大的未来发展潜力。

相似文献

1
Quantification and classification of neuronal responses in kernel-smoothed peristimulus time histograms.
J Neurophysiol. 2015 Feb 15;113(4):1260-74. doi: 10.1152/jn.00595.2014. Epub 2014 Dec 4.
2
Modelling spike trains and extracting response latency with Bayesian binning.
J Physiol Paris. 2010 May-Sep;104(3-4):128-36. doi: 10.1016/j.jphysparis.2009.11.015. Epub 2009 Nov 27.
3
A general likelihood framework for characterizing the time course of neural activity.
Neural Comput. 2011 Oct;23(10):2537-66. doi: 10.1162/NECO_a_00185. Epub 2011 Jul 6.
4
Single-trial estimation of neuronal firing rates: from single-neuron spike trains to population activity.
J Neurosci Methods. 1999 Dec 15;94(1):81-92. doi: 10.1016/s0165-0270(99)00127-2.
5
Optimizing time histograms for non-Poissonian spike trains.
Neural Comput. 2011 Dec;23(12):3125-44. doi: 10.1162/NECO_a_00213. Epub 2011 Sep 15.
6
Estimation of neural firing rate: the wavelet density estimation approach.
Biomed Tech (Berl). 2013 Aug;58(4):377-86. doi: 10.1515/bmt-2013-0060.
8
Estimating neuronal firing density: A quantitative analysis of firing rate map algorithms.
PLoS Comput Biol. 2023 Dec 27;19(12):e1011763. doi: 10.1371/journal.pcbi.1011763. eCollection 2023 Dec.
9
An efficient algorithm for continuous time cross correlogram of spike trains.
J Neurosci Methods. 2008 Mar 15;168(2):514-23. doi: 10.1016/j.jneumeth.2007.10.005. Epub 2007 Oct 22.
10
Adaptive inverse control of neural spatiotemporal spike patterns with a reproducing kernel Hilbert space (RKHS) framework.
IEEE Trans Neural Syst Rehabil Eng. 2013 Jul;21(4):532-43. doi: 10.1109/TNSRE.2012.2200300. Epub 2012 Aug 1.

引用本文的文献

1
Characterization and closed-loop control of infrared thalamocortical stimulation produces spatially constrained single-unit responses.
PNAS Nexus. 2024 Feb 22;3(2):pgae082. doi: 10.1093/pnasnexus/pgae082. eCollection 2024 Feb.
2
Frequency-dependent spike-pattern changes in motor cortex during thalamic deep brain stimulation.
J Neurophysiol. 2020 Nov 1;124(5):1518-1529. doi: 10.1152/jn.00198.2020. Epub 2020 Sep 23.
3
Adaptation Modulates Spike-Phase Coupling Tuning Curve in the Rat Primary Auditory Cortex.
Front Syst Neurosci. 2020 Aug 3;14:55. doi: 10.3389/fnsys.2020.00055. eCollection 2020.
4
Spatial quantification of the synaptic activity phenotype across large populations of neurons with Markov random fields.
Bioinformatics. 2018 Sep 15;34(18):3196-3204. doi: 10.1093/bioinformatics/bty322.
5

本文引用的文献

1
The log-dynamic brain: how skewed distributions affect network operations.
Nat Rev Neurosci. 2014 Apr;15(4):264-78. doi: 10.1038/nrn3687. Epub 2014 Feb 26.
2
Selectivity of pyramidal cells and interneurons in the human medial temporal lobe.
J Neurophysiol. 2011 Oct;106(4):1713-21. doi: 10.1152/jn.00576.2010. Epub 2011 Jun 29.
3
Single-neuron responses in humans during execution and observation of actions.
Curr Biol. 2010 Apr 27;20(8):750-6. doi: 10.1016/j.cub.2010.02.045. Epub 2010 Apr 8.
4
Kernel bandwidth optimization in spike rate estimation.
J Comput Neurosci. 2010 Aug;29(1-2):171-182. doi: 10.1007/s10827-009-0180-4. Epub 2009 Aug 5.
5
Stochasticity, spikes and decoding: sufficiency and utility of order statistics.
Biol Cybern. 2009 Jun;100(6):447-57. doi: 10.1007/s00422-009-0321-x. Epub 2009 Jun 11.
6
Latency and selectivity of single neurons indicate hierarchical processing in the human medial temporal lobe.
J Neurosci. 2008 Sep 3;28(36):8865-72. doi: 10.1523/JNEUROSCI.1640-08.2008.
7
Analysis of Firing Pafferns in Single Neurons.
Science. 1960 Jun 17;131(3416):1811-2. doi: 10.1126/science.131.3416.1811.
8
A method for selecting the bin size of a time histogram.
Neural Comput. 2007 Jun;19(6):1503-27. doi: 10.1162/neco.2007.19.6.1503.
9
Error bars in experimental biology.
J Cell Biol. 2007 Apr 9;177(1):7-11. doi: 10.1083/jcb.200611141.
10
Statistical issues in the analysis of neuronal data.
J Neurophysiol. 2005 Jul;94(1):8-25. doi: 10.1152/jn.00648.2004.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验