Ranjan R, Chiamvimonvat N, Thakor N V, Tomaselli G F, Marban E
Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.
Biophys J. 1998 Apr;74(4):1850-63. doi: 10.1016/S0006-3495(98)77895-6.
Anodal stimulation is routinely observed in cardiac tissue, but only recently has a mechanism been proposed. The bidomain cardiac tissue model proposes that virtual cathodes induced at sites distant from the electrode initiate the depolarization. In contrast, none of the existing cardiac action potential models (Luo-Rudy phase I and II, or Oxsoft) predict anodal stimulation at the single-cell level. To determine whether anodal stimulation has a cellular basis, we measured membrane potential and membrane current in mammalian ventricular myocytes by using whole-cell patch clamp. Anode break responses can be readily elicited in single ventricular cells. The basis of this anodal stimulation in single cells is recruitment of the hyperpolarization-activated inward current I(f). The threshold of activation for I(f) is -80 mV in rat cells and -120 mV in guinea pig or canine cells. Persistent I(f) "tail" current upon release of the hyperpolarization drives the transmembrane potential toward the threshold of sodium channels, initiating an action potential. Time-dependent block of the inward rectifier, I(K1), at hyperpolarized potentials decreases membrane conductance and thereby potentiates the ability of I(f) to depolarize the cell on the break of an anodal pulse. Inclusion of I(f), as well as the block and unblock kinetics of I(K1), in the existing Luo-Rudy action potential model faithfully reproduces anode break stimulation. Thus active cellular properties suffice to explain anode break stimulation in cardiac tissue.
在心脏组织中经常观察到阳极刺激,但直到最近才提出其机制。双域心脏组织模型提出,在远离电极的部位诱导产生的虚拟阴极引发去极化。相比之下,现有的心脏动作电位模型(Luo-Rudy I期和II期模型或Oxsoft模型)在单细胞水平上均未预测到阳极刺激。为了确定阳极刺激是否具有细胞基础,我们使用全细胞膜片钳技术测量了哺乳动物心室肌细胞的膜电位和膜电流。在单个心室细胞中很容易引发阳极断电反应。单细胞中这种阳极刺激的基础是超极化激活内向电流I(f)的募集。大鼠细胞中I(f)的激活阈值为-80 mV,豚鼠或犬类细胞中为-120 mV。超极化解除时持续的I(f)“尾”电流将跨膜电位驱动至钠通道阈值,从而引发动作电位。在超极化电位下,内向整流器I(K1)的时间依赖性阻断会降低膜电导,从而增强I(f)在阳极脉冲中断时使细胞去极化的能力。在现有的Luo-Rudy动作电位模型中纳入I(f)以及I(K1)的阻断和解除动力学,能够忠实地再现阳极断电刺激。因此,活跃的细胞特性足以解释心脏组织中的阳极断电刺激。