Suppr超能文献

大肠杆菌K-12的精氨酸阻遏物与操纵子的小沟和大沟决定簇直接接触。

The arginine repressor of Escherichia coli K-12 makes direct contacts to minor and major groove determinants of the operators.

作者信息

Wang H, Glansdorff N, Charlier D

机构信息

Erfelijkheidsleer en Microbiologie, Vrije Universiteit Brussel, 1-av. E. Gryson, Brussels, B-1070, Belgium.

出版信息

J Mol Biol. 1998 Apr 10;277(4):805-24. doi: 10.1006/jmbi.1998.1632.

Abstract

In order to gain further insight into the molecular mechanism of arginine-dependent operator recognition by the hexameric Escherichia coli arginine repressor we have probed protein-DNA interactions in vitro and in vivo. We have extensively applied the chemical modification-protection and premodification-interference approach to two operators, the natural operator overlapping the P2 promoter of the carAB operon and a fully symmetrical consensus sequence. Backbone contacts were revealed by hydroxyl radical footprinting and phosphate ethylation interference. Base-specific contacts to purines and pyrimidines were revealed by methylation protection and premodification interference, KMnO4 and NH2OH.HCl-specific modification of thymine and cytosine residues, base-removal (depurination and depyrimidation), and base substitution (uracil and inosine). Additional information on the groove specificity of repressor binding was obtained by small ligand binding interference (distamycin and methyl green). In vivo, we measured the effects on the repressibility of 24 single base-pair substitutions obtained by saturation mutagenesis of half an Arg box in the carAB operator. The results of these experiments point to the conclusion that a hexameric arginine repressor molecule covers four turns of the helix, makes base-specific contacts to at least one guanine (G4 or G4') and two thymine (T3, T13', or T3', T13) residues in each one of four consecutive major grooves on one face of the helix and with four A-T/T-A base-pairs, comprising the adenine residues A9, 9', 12, 12' and the thymine residues T10, 10', 11, 11', in the two outermost minor grooves of the operator, on the very same face of the DNA molecule. The hydrophobic 5-methyl groups of four thymine residues (T3, 3', 13, 13') in each Arg box contribute to major groove-specific recognition via hydrophobic and/or van der Waals interactions. The importance of minor groove contacts was further supported by the drastic effect of distamycin binding interference. In vivo, the most pronounced drops in repressibility were occasioned by mutations at positions 10 (A-->G or C), 11 (T-->A or G) and 12 (A-->G, T or C).

摘要

为了更深入地了解六聚体大肠杆菌精氨酸阻遏物识别精氨酸依赖性操纵基因的分子机制,我们在体外和体内研究了蛋白质与DNA的相互作用。我们广泛应用化学修饰保护和预修饰干扰方法研究了两个操纵基因,一个是与carAB操纵子P2启动子重叠的天然操纵基因,另一个是完全对称的共有序列。通过羟基自由基足迹法和磷酸乙基化干扰揭示了主链接触。通过甲基化保护和预修饰干扰、KMnO4以及胸腺嘧啶和胞嘧啶残基的NH2OH·HCl特异性修饰、碱基去除(脱嘌呤和脱嘧啶)以及碱基替换(尿嘧啶和次黄嘌呤)揭示了与嘌呤和嘧啶的碱基特异性接触。通过小分子配体结合干扰(偏端霉素和甲基绿)获得了关于阻遏物结合的沟特异性的更多信息。在体内,我们测量了carAB操纵基因中半个精氨酸框饱和诱变得到的24个单碱基对替换对阻遏性的影响。这些实验结果表明,六聚体精氨酸阻遏物分子覆盖螺旋的四圈,在螺旋一侧的四个连续大沟中的每一个沟中与至少一个鸟嘌呤(G4或G4')和两个胸腺嘧啶(T3、T13'或T3'、T13)残基进行碱基特异性接触,并与四个A - T/T - A碱基对接触,这四个碱基对包括操纵基因两个最外侧小沟中的腺嘌呤残基A9、9'、12、12'和胸腺嘧啶残基T10、10'、11、11',位于DNA分子的同一侧。每个精氨酸框中四个胸腺嘧啶残基(T3、3'、13、13')的疏水5 - 甲基基团通过疏水和/或范德华相互作用有助于大沟特异性识别。偏端霉素结合干扰的显著影响进一步支持了小沟接触的重要性。在体内,阻遏性最明显下降是由第10位(A→G或C)、第11位(T→A或G)和第12位(A→G、T或C)的突变引起的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验