Fujioka H, Murase K, Inoue T, Ishimaru Y, Akamune A, Yamamoto Y, Tanada S, Ikezoe J
Department of Radiology, Matsuyama Shimin Hospital.
Kaku Igaku. 1998 Jan;35(1):7-14.
Cerebral blood flow (CBF) has been measured using a microsphere model with octanol-extracted radioactivity counts (integral value of input function). We developed a new method estimating the integral value of input function. First, we fitted the whole brain time-activity curves early after intravenous injection of N-isopropyl-p-[123I]iodoamphetamine (123I-IMP) by the least-squares method. Second, we differentiated this equation. Third, we calibrated it using octanol-extracted radioactivity counts of the arterial blood sampled at 5 min. Finally, we integrated it. A significant correlation was found between the integral values obtained using a new method and those obtained using the continuous arterial blood sampling data (y = 1.048x-1206, r = 0.984). The errors between the CBF values obtained using a new method and those obtained using the 5-min continuous arterial blood sampling was 6.88 +/- 4.78%. Measurement of integral values of the input function using a new method with one-point arterial blood sampling is less invasive and convenient, and is not influenced by cardiopulmonary disease or smoking. Therefore, it would be useful for the routine measurement of CBF.